Automorphism groups of tree actions and of graphs of groups

Hyman Bass ${ }^{\mathrm{a}, *}$, Renfang Jiang ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Columbia University, New York, NY 10027, USA
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
Communicated by C.A. Weibel; received 15 September 1994

Abstract

Let Γ be a group. The minimal non-abelian Γ-actions on real trees can be parametrized by the projective space of the associated length functions. The outer automorphism group of Γ, Out $(\Gamma)=\operatorname{Aut}(\Gamma) / \operatorname{ad}(\Gamma)$, acts on this space. Our objective is to calculate the stabilizer $\operatorname{Out}(\Gamma)_{l}=\{\alpha \in \operatorname{Aut}(\Gamma) \mid l \circ \alpha=l\} / \operatorname{ad}(\Gamma)$, where l is the length function of a minimal nonabelian action (without inversion) on a simplicial tree. In this case, stabilizing l up to a scalar factor is equivalent to stabilizing l. The simplicial tree action is encoded by a quotient graph of groups \mathfrak{H}. We produce an exact sequence $1 \rightarrow \operatorname{In} \operatorname{Aut}(\mathfrak{H}) \rightarrow \operatorname{Aut}(\mathfrak{H}) \rightarrow \operatorname{Out}(\Gamma)_{l} \rightarrow 1$. A six-step filtration on $\operatorname{Out}(\Gamma)_{l}$ is obtained, where successive quotients are explicitly described in terms of the data defining \mathfrak{H}. In the process we obtain similar information about the structure of $\operatorname{Aut}(\mathfrak{A})$. We also draw the consequences in the case of amalgams and HNN -extensions.

1991 Math. Subj. Class.: 20E08, 20F28

0. Introduction

Let Γ be a group with an action on a real tree X. The associated (hyperbolic, or translation) length function is

$$
\begin{equation*}
l=l_{X}: \Gamma \rightarrow \mathbf{R}, \quad l(g)=\operatorname{Min}_{x \in X} d(g x, x) \tag{1}
\end{equation*}
$$

These length functions play a role, for tree actions, like that of characters for linear representations. In particular they are class functions on Γ.

[^0]It is shown in $[1,3]$ that, if the Γ-action on X is "minimal and non-abelian," then l_{X} determines X up to unique Γ-equivariant isometry (cf. Section 1.7). This permits one to parameterize such tree actions by the space of such length functions,

$$
\begin{equation*}
\operatorname{LF}(\Gamma)\left(\subset \mathbf{R}^{\psi(\Gamma)}\right) \tag{2}
\end{equation*}
$$

where $\mathscr{C}(\Gamma)$ denotes the set of conjugacy classes of Γ. It is natural to consider length functions only up to a scalar factor, thus forming

$$
\begin{equation*}
\operatorname{PLF}(\Gamma) \subset \mathbf{P R}^{\mathscr{C}(\Gamma)} \tag{3}
\end{equation*}
$$

The group $\operatorname{Aut}(\Gamma)$ acts, by pre-composition, on tree actions, and on length function. Since the latter are class functions we see that

$$
\begin{equation*}
\operatorname{Out}(\Gamma)=\operatorname{Aut}(\Gamma) / \operatorname{ad}(\Gamma) \text { acts on } \operatorname{LF}(\Gamma), \tag{4}
\end{equation*}
$$

and so also on $\operatorname{PLF}(\Gamma)$. The dynamics of this action has proven to be a useful tool in the study of $\operatorname{Out}(\Gamma)$.

Our object here is to calculate the stabilizer

$$
\begin{equation*}
\operatorname{Out}(\Gamma)_{t}=\{\alpha \in \operatorname{Aut}(\Gamma) \mid l \circ \alpha=l\} / \operatorname{ad}(\Gamma) \tag{5}
\end{equation*}
$$

where $l=l_{X}$ is the length function of an action (without inversions) on a simplicial tree X, which is minimal and non-abelian. In this case, stabilizing l up to a scalar factor is equivalent to stabilizing l. Indeed, $l(\Gamma)$ has a least value $M>0$, so if $\alpha \in \operatorname{Aut}(\Gamma)$ and $l \circ \alpha=c l$, then $c l(\Gamma)=l(\alpha \Gamma)=l(\Gamma)$, so $M=c M$, and $c=1$.

So let X be a minimal non-abelian simplicial Γ-tree without inversions, and length function l. From the theory of simplicial tree actions (cf. [7] or [2]), the tree action (Γ, X) is encoded by a quotient graph of groups

$$
\begin{equation*}
\Gamma \ X=\mathfrak{A}=(A, \mathscr{A}) \tag{6}
\end{equation*}
$$

In [2] there is introduced a notion of morphisms for graphs of groups which, in a similar fashion, encode morphisms of tree actions.
Now suppose that $\alpha \in \operatorname{Aut}(\Gamma)$ and $l \circ \alpha=l$. Then it follows from the theorem cited above that there is a unique α-equivariant isomorphism $\gamma: X \rightarrow X$. If X_{α} denotes X with Γ-action twisted by α, then we have an isomorphism of tree actions (α, γ) : $(\Gamma, X) \rightarrow\left(\Gamma, X_{\alpha}\right)$. This, by the methods of [2], can be used to produce a $\Phi \in \operatorname{Aut}(\mathscr{U})$ which gives rise to (α, γ).

These ideas are used in Section 4 to produce an exact sequence

$$
\begin{equation*}
1 \rightarrow \operatorname{In} \operatorname{Aut}(\mathfrak{U}) \rightarrow \operatorname{Aut}(\mathfrak{Q}) \rightarrow \operatorname{Out}(\Gamma)_{l} \rightarrow 1 \tag{7}
\end{equation*}
$$

In Section 5 we use (7) to draw some first consequences in the case of amalgams and HNN-extensions. The utility of (7) for our purposes is that, while Aut(\mathfrak{H}) is a somewhat complicated object, it is, at the same time, very explicitly parameterized in terms of the data defining \mathfrak{H}, and so it is susceptible to fairly detailed computation. This is what we carry out in Sections 6 and 7. The upshot, in Theorem 8.1, is a
six-step filtration on $\operatorname{Out}(\Gamma)_{\ell}$, whose successive quotients are explicitly described in terms of the data defining \mathfrak{H}. In the process we obtain similar information about the structure of $\operatorname{Aut}(\mathscr{U})$.

1. Tree actions and hyperbolic length

Graphs (and trees) X here will be understood in the sense of [7] or [2]. We write $V X$ and $E X$ for the sets of vertices and (oriented) edges, respectively, $\partial_{0} e, \partial_{1} e$ for the initial and terminal vertices of $e \in E X$, and \bar{e} for e with reversed orientation. For $x \in V X$ we put $E_{0}(x)=\left\{e \in E X \mid \partial_{0} e=x\right\}$. The distance $d(x, y)$ between vertices x and y in a connected graph is the minimum length of an edge path joining them.
1.1. Γ-trees. Let Γ be a group. A Γ-tree is a tree X with an action of Γ on X as tree automorphisms. A morphism $X \rightarrow Y$ of Γ-trees is a Γ-equivariant graph morphism. We call a Γ-tree X minimal if it has no proper Γ-invariant subtree.
1.2. Hyperbolic length (cf. [7, 1, Section 6]). Let X be a Γ-tree and $g \in \Gamma$. Define $l_{X}(g)$ and $X_{g} \subset X$ as follows:

Inversions. If g^{2} fixes a vertex but g does not then there is a unique geometric edge $\{e, \bar{e}\}$ such that $g e=\bar{e}$. We then put $l_{X}(g)=0$ and $X_{g}=\emptyset$, and call g an inversion. Every $\langle g\rangle$-invariant subtree contains e.

If g is not an inversion we define

$$
\begin{align*}
l_{X}(g) & =\operatorname{Min}_{x \in V X} d(g x, x), \tag{2}\\
X_{g} & =\left\{x \in V X \mid d(g x, x)=l_{X}(g)\right\} .
\end{align*}
$$

Then X_{g} is the vertex set of a subtree of X, also denoted X_{g}. We further distinguish two cases.

Elliptic. $l_{X}(g)=0$, and X_{g} is the tree of fixed points of g. Every $\langle g\rangle$ invariant subtree of X meets X_{g}.

Hyperbolic. $l_{X}(g)>0$. Then X_{g} is a linear subtree, called the g-axis, along which g induces a translation of amplitude $l_{X}(g)$. Every
$\langle g\rangle$-invariant subtree contains X_{g}.
The function $l_{X}: \Gamma \rightarrow \mathbf{Z}$ is called the hyperbolic length function of the Γ-tree X. For $g, h \in \Gamma$ we have $l_{X}\left(h g h^{-1}\right)=l_{X}(g)$ and $X_{h g h^{-1}}=h X_{g}$. Moreover, for $n \in \mathbf{Z}$, we have $l_{X}\left(g^{n}\right)=|n| l_{X}(g)$, and $X_{g} \subset X_{g^{n}}$, with equality if $n \cdot l_{X}(g) \neq 0$.

For $x \in V X$ and $g \in \Gamma$ put $L_{x}(g)=d(g x, x)$. If g is not an inversion then it follows by definition that

$$
\begin{equation*}
l_{X}(g)=\operatorname{Min}_{x \in V X} L_{x}(g) \tag{5}
\end{equation*}
$$

and the minimum is achieved exactly at $x \in X_{g}$.
1.3. Lemma. Let $(\alpha, \gamma):(\Gamma, X) \rightarrow\left(\Gamma^{\prime}, X^{\prime}\right)$ be a morphism of tree actions, i.e. $\alpha: \Gamma \rightarrow$ Γ^{\prime} is a group homomorphism and $\gamma: X \rightarrow X^{\prime}$ is an α-equivariant tree morphism. Let l and l^{\prime} denote the corresponding hyperbolic length functions. Then, for $g \in \Gamma$, we have

$$
l^{\prime}(\alpha(g)) \leq l(g)
$$

with equality unless g is hyperbolic on X and γ is not injective on X_{g}.

Proof. If g fixes $x \in V X$ then $\alpha(g)$ fixes $\gamma(x) \in V X^{\prime}$. If g inverts $e \in E X$ then $\alpha(g)$ inverts $\gamma(e) \in E X^{\prime}$. In both of these cases, $l(g)=0=l^{\prime}(\alpha(g))$. Suppose finally that g on X is hyperbolic, and let $x \in V X_{g}$. Then

$$
l(g)=d_{X}(g x, x) \geq d_{X^{\prime}}(\gamma(g x), \gamma(x))=d_{X^{\prime}}(\alpha(g) \gamma(x), \gamma(x)) \geq l^{\prime}(\alpha(g))
$$

The $\langle\alpha(g)\rangle$-invariant subtree $\gamma\left(X_{g}\right)$ of X^{\prime} meets $X_{\alpha(g)}^{\prime}$. If γ on X_{g} is injective, then clearly $\gamma\left(X_{g}\right)$ must be the $\alpha(g)$-axis, and $l^{\prime}(\alpha(g))=l(g)$. If γ on X_{g} is not injective, then it must fold two adjacent edges $\gamma(e)=\gamma(f)$:

Suppose that g translates X_{g} in the direction of e, and $l(g)=n$. If $n=1$, then it is easy to see, by equivariance of γ, that γ folds X_{g} like an accordion down to a single geometric edge, which is inverted by $\alpha(g)$, whence $l(\alpha(g))=0$. If $n>1$, then $z \in[g y, y]$, and so, since $\gamma(y)=\gamma(z)$,

$$
\begin{aligned}
l(g) & =d(g y, y)>d(g y, z) \\
& \geq d(\gamma(g y), \gamma(z))=d(\alpha(g) \gamma(y), \gamma(y)) \\
& \geq l^{\prime}(\alpha(g)) .
\end{aligned}
$$

1.4. Proposition (cf. [3, Proposition 3.1]). Let X be a Γ-tree with $l_{X} \neq 0$. Then there is a unique minimal Γ-invariant subtree,

$$
X_{\Gamma}=\bigcup_{g \in \Gamma, l_{X}(g)>0} X_{g},
$$

and $l_{X_{r}}=l_{X}$.
1.5. Proposition. If $\Gamma \leq G=\operatorname{Aut}(X)$ acts minimally on X then the centralizer,

$$
Z_{G}(\Gamma)\left(=\operatorname{Aut}_{\Gamma}(X)\right)=\{1\}
$$

except in the following cases:
(e) $X=0-\mathrm{o}$, and $\Gamma=G$ has order 2.
$(\mathrm{Z}) X \cong \mathbf{Z}, \Gamma$ acts by translations, and $Z_{G}(\Gamma)$ is the full group of translations.
Proof. Let $z \in Z_{G}(\Gamma), z \neq 1$. If z inverts an edge e, then $\{e, \bar{e}\}$ is Γ-invariant so $X=0-\mathrm{o}$ (minimality), and we have case (e). If z is not an inversion then the tree X_{z} is Γ-invariant, so $X=X_{z}$ (minimality). If z is elliptic then z is the identity on $X_{z}=X$, contradicting $z \neq 1$. Then z is hyperbolic, so $X=X_{z} \cong \mathbf{Z}$. The centralizer of the translation, z, in the dihedral $\operatorname{group} \operatorname{Aut}(X)$ is the group of translations, whence case (Z).
1.6. Abelian actions. Let $\varphi: \Gamma \rightarrow \mathbf{Z}$ be a homomorphism. Then Γ acts on the linear tree $X(\varphi)=\mathbf{Z}$ by translation, via $\varphi: g n=\varphi(g)+n$ for $g \in \Gamma, n \in \mathbf{Z}$. Then clearly

$$
l_{X(\varphi)}(g)=|\varphi(g)| .
$$

Call a Γ-tree X abelian if $l_{X}=|\varphi|$ for some homomorphism $\varphi: \Gamma \rightarrow \mathbf{Z}$. It is known then that φ is unique up to a factor ± 1 ($[1,(1.4)])$. Moreover there is a Γ-equivariant morphism $X \rightarrow X(\varphi)$, unique up to a translation of $X(\varphi)$ [1, p.344].

For a Γ-tree X without inversions, the following conditions are equivalent (cf. [1, Section 7]):
(a) X is abelian.
(b) $l\left(g h g^{-1} h^{-1}\right)=0$ for all $g, h \in \Gamma\left(l=l_{X}\right)$.
(c) $l(g h) \leq l(g)+l(h)$ for all $g, h \in \Gamma$.
(d) $X_{g} \cap X_{h} \neq \emptyset$ for all $g, h \in \Gamma$.
(e) Γ fixes a vertex or an end of X.
1.7. Non-abelian actions. For these we have the following uniqueness theorem.

Theorem ([1, (7.13)], or [3]). Let X, Y be minimal non-abelian Γ-trees without inversions. If $l_{X}=l_{Y}$ then there is a unique Γ-morphism $\phi: X \rightarrow Y$, and it is an isomorphism.

Proof. In [1, (7.13)] it is shown that if $l_{X}=l_{Y}$ then there is a (unique) Γ-isomorphism $\phi_{0}: X \rightarrow Y$. It remains only to show that, if $l_{X}=l_{Y}$ and if ϕ is any Γ-morphism, then ϕ is an isomorphism, hence $\phi=\phi_{0}$. Since $l_{X}=l_{Y}$ we know from Lemma 1.3 that, for hyperbolic $g \in \Gamma, \phi: X_{g} \rightarrow Y_{g}$ is an isomorphism. Moreover it follows from $[1,(7.4)]$ that ϕ preserves distance between hyperbolic axes. Let $g, h \in \Gamma$ be hyperbolic with disjoint axes. (These exist since X is non-abelian: [1, (7.3), (7.4) and (7.6)].) Let $[u, v]=\left[X_{g}, X_{h}\right]$ be the bridge from X_{g} to X_{h}. Then $[\phi(u), \phi(v)]=\left[Y_{g}, Y_{h}\right]$. Since both ϕ and ϕ_{0} carry X_{g} to Y_{g} and X_{h} to Y_{h}, we have $\phi(u)=\phi_{0}(u)$. Now the locus where ϕ and ϕ_{0} agree is a non-empty Γ-invariant set of vertices in X on which ϕ, like ϕ_{0}, is distance preserving. By minimality, this set of vertices spans X. Lemma 1.8 then shows that ϕ is an isometry on X, hence $\phi=\phi_{0}$.
1.8. Lemma. Let $\phi: X \rightarrow Y$ be a morphism of trees, and let $S \subset V X$ be a spanning set of vertices. (I.e. the smallest subtree of X containing S is X itself.) If $\left.\phi\right|_{s}$ is distance preserving then ϕ on X preserves distance, and hence is injective.

Proof. If ϕ is not injective then it "folds" two adjacent edges

Since S spans X, e and f belong to geometric edge paths $\left[s_{y}, y^{\prime}\right]$ and $\left[s_{z}, z^{\prime}\right]$, respectively, with $s_{y}, s_{z}, y^{\prime}, z^{\prime} \in S$.

Then clearly $\left[y^{\prime}, z^{\prime}\right]=\left[y^{\prime}, x\right] \cup\left[x, z^{\prime}\right]$, whereas the geodesic $\left[\phi\left(y^{\prime}\right), \phi\left(z^{\prime}\right)\right]$, because of the fold, is contained in the shorter edge path $\phi\left(\left[y^{\prime}, y\right]\right) \cup \phi\left(\left[z, z^{\prime}\right]\right)$. This contradicts the fact that ϕ preserves distance on S.
1.9. The actions of $\operatorname{Aut}(\Gamma)$ and $\operatorname{Out}(\Gamma)$. Let Γ be a group, with automorphism sequence

$$
\begin{equation*}
1 \rightarrow Z(\Gamma) \rightarrow \Gamma \xrightarrow{\mathrm{ad}} \operatorname{Aut}(\Gamma) \rightarrow \operatorname{Out}(\Gamma) \rightarrow 1 . \tag{1}
\end{equation*}
$$

Here $Z(\Gamma)=$ center of Γ, and $\operatorname{ad}(g)$ is the inner automorphism, sending x to $g_{x g^{-1}}$.
Let X be a tree and $G=\operatorname{Aut}(X)$. Actions of Γ on X correspond to homomorphisms $\rho \in \operatorname{Hom}(\Gamma, G)$. Let us write here X_{ρ} and l_{ρ} for the corresponding Γ-tree and length function.

The group $\operatorname{Aut}(\Gamma)$ acts on $\operatorname{Hom}(\Gamma, G)$ by $\alpha: \rho \mapsto \rho \circ \alpha$. The stabilizer of ρ is

$$
\begin{align*}
\operatorname{Aut}(\Gamma)_{\rho} & =\{\alpha \mid \rho \circ \alpha=\rho\} \\
& =\left\{\alpha \mid g^{-1} \alpha(g) \in \operatorname{Ker}(\rho) \text { for all } g \in \Gamma\right\} \tag{2}
\end{align*}
$$

This is trivial when ρ is faithful (i.e. injective).
We are interested in the stabilizer of the isomorphism class (ρ) of ρ (or of X_{ρ}). Observe that

$$
\begin{equation*}
X_{\rho} \cong X_{\rho^{\prime}} \text { iff } \rho^{\prime}=\operatorname{ad}(\gamma) \circ \rho \text { for some } \gamma \in G \tag{3}
\end{equation*}
$$

Here $\gamma: X \rightarrow X$ is the Γ-isomorphism $X_{\rho} \rightarrow X_{\rho^{\prime}}: \gamma(\rho(g) x)=\rho^{\prime}(g) \gamma(x)$ for $g \in \Gamma$, $x \in X$, i.e. $\gamma \rho(g)=\rho^{\prime}(g) \gamma$ in G. Any two such γ differ by a Γ-automorphism of X_{ρ}. If X_{ρ} is minimal and non-abelian it follows from $\operatorname{Proposition~} 1.5$ that $\operatorname{Aut}_{\Gamma}\left(X_{\rho}\right)=\{1\}$, and so γ above is unique.

Now Theorem 1.7 in this case gives us the following result.
1.10. Theorem. Let $\rho: \Gamma \rightarrow G=\operatorname{Aut}(X)$ define a minimal non-abelian Γ-tree X_{ρ}. Let $\alpha \in \operatorname{Aut}(\Gamma)$. The following conditions are equivalent.
(a) $X_{\rho} \cong X_{\rho \circ \alpha}\left(\right.$ i.e. $\left.\alpha \in \operatorname{Aut}(\Gamma)_{(\rho)}\right)$.
(b) $l_{\rho \circ \alpha}\left(=l_{\rho} \circ \alpha\right)=l_{\rho}$ (i.e. $\left.\alpha \in \operatorname{Aut}(\Gamma)_{l_{\rho}}\right)$.
(c) There is a (unique) $\gamma \in G$ such that $\rho(\alpha(g))=\gamma \rho(g) \gamma^{-1}$ for all $g \in \Gamma$.

Remark. In view of (c), we have a map to the normalizer of $\rho \Gamma$, $\operatorname{Aut}(\Gamma)_{t_{\rho}} \rightarrow N_{G}(\rho \Gamma)$, $\alpha \mapsto \gamma$ which is easily seen to be a homomorphism.
1.11. Corollary. In Theorem 1.10, suppose that ρ is the inclusion of a subgroup $\Gamma \leq G$, and $l=l_{\rho}$. Then

$$
\operatorname{Aut}(\Gamma)_{l}=N_{G}(\Gamma)
$$

the normalizer of Γ in G.
Proof. The natural homomorphism $N_{G}(\Gamma) \rightarrow \operatorname{Aut}(\Gamma)$ is injective, since $\operatorname{Aut}_{\Gamma}(X)=$ $Z_{G}(\Gamma)$ is trivial, and its image is $\operatorname{Aut}(\Gamma)_{(\rho)}$, which, by Theorem 1.10 , coincides with $\operatorname{Aut}(\Gamma)_{l}$.

The following lemma will be used in Section 6 below.
1.12. Lemma. Let X be a minimal non-abelian Γ-tree. Let $(\alpha, \lambda):(\Gamma, X) \rightarrow(\Gamma, X)$ be an isomorphism of tree actions: $\alpha \in \operatorname{Aut}(\Gamma), \lambda \in \operatorname{Aut}(X)$, and $\lambda(g x)=\alpha(g) \lambda(x)$
for $g \in \Gamma, x \in X$. If $\alpha=\operatorname{ad}(u)$ is an inner automorphism, $u \in \Gamma$, then $\lambda=u$, and hence λ induces the identity on $A=\Gamma \backslash X$.

Proof. Since $u: X \rightarrow X$ is also equivariant for $\alpha=\operatorname{ad}(u)$, we have $\hat{\lambda}=u v$ with $v \in$ $\operatorname{Aut}_{\Gamma}(X)$. When X is minimal non-abelian we have $\operatorname{Aut}_{\Gamma}(X)=\{1\}$, by Proposition 1.5, whence $\lambda=u$.

2. Graphs of groups and length functions

2.1. A graph of groups $\mathfrak{H}=(A, \mathscr{A})$ consists of a connected graph A, groups \mathscr{A}_{a} $(a \in V A)$, and $\mathscr{A}_{e}=\mathscr{A}_{\bar{e}}(e \in E A)$, and monomorphisms $\alpha_{e}: \mathscr{A}_{e} \rightarrow \mathscr{A}_{\hat{o}_{0} e}$. The path group is

$$
\pi(\mathfrak{H})=\left[\left({ }_{a \in V A}^{*} \mathscr{A}_{a}\right) * F(E A)\right] / N
$$

where $F(E A)$ is the free group with basis $E A$, and N is the normal subgroup that imposes the relations

$$
e \bar{e}=1
$$

and

$$
e \alpha_{\bar{e}}(s) e^{-1}=\alpha_{e}(s)
$$

for all $e \in E A, \quad s \in \mathscr{A}_{e}$. We identify \mathscr{A}_{a} and $E A$ with their images in $\pi(\mathfrak{H})$ (cf. [2, Section 1]).
2.2. Paths in \mathfrak{M}. A path in \mathfrak{A} is a finite sequence

$$
\begin{equation*}
\gamma=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right) \tag{1}
\end{equation*}
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is an edge-path in A, say $\partial_{1} e_{i}=a_{i}=\hat{\partial}_{0} e_{i+1}(1 \leq i<n), a_{0}=\partial_{0} e_{1}$, $a_{n}=\partial_{1} e_{n}$, and we have $g_{i} \in \mathscr{A}_{a_{i}}(0 \leq i \leq n)$. We call γ a path of length n from a_{0} to a_{n}, and put

$$
\begin{equation*}
|\gamma|=g_{0} e_{1} g_{1} e_{2} \cdots g_{n-1} e_{n} g_{n} \in \pi(\mathfrak{H}) \tag{2}
\end{equation*}
$$

For $a, b \in V A$ let

$$
\begin{equation*}
P[a, b]=\text { the set of paths (in } \mathfrak{A l}) \text { from } a \text { to } b, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi[a, b]=|P[a, b]| \subset \pi(\mathfrak{U}) \tag{4}
\end{equation*}
$$

For $g \in \pi[a, b]$ define the length

$$
\begin{equation*}
L_{\mathfrak{A}}(g)=\min \{\text { length }(\gamma)|\gamma \in P[a, b],|\gamma|=g\} . \tag{5}
\end{equation*}
$$

Note that $L_{\mathfrak{U}}: \pi[a, b] \rightarrow \mathbf{Z}$ factors through $\mathscr{A}_{a} \backslash \pi[a, b] / \mathscr{A}_{b}$.
With $\gamma \in P[a, b]$ as above ($a=a_{0}, b=a_{n}$) and

$$
\delta=\left(h_{0}, f_{1}, h_{1}, \ldots, h_{m-1}, f_{m}, h_{m}\right) \in P[b, c]
$$

we can define the composite $\gamma \delta \in P[a, c]$ by

$$
\gamma \delta=\left(g_{0}, e_{1}, g_{1}, \ldots, e_{n}, g_{n} h_{0}, f_{1}, h_{1}, \ldots, f_{m}, h_{m}\right)
$$

Clearly $|\gamma \delta|=|\gamma||\delta|$. Whence a product

$$
\begin{equation*}
\pi[a, b] \times \pi[b, c] \rightarrow \pi[a, c] \tag{6}
\end{equation*}
$$

given by multiplication in $\pi(\mathfrak{H})$.
Defining

$$
\begin{equation*}
\gamma^{-1}=\left(g_{n}^{-1}, \bar{e}_{n}, g_{n-1}^{-1}, \ldots, g_{1}^{-1}, \bar{e}_{1}, g_{0}^{-1}\right) \in P[b, a], \tag{7}
\end{equation*}
$$

we have $\left|\gamma^{-1}\right|=|\gamma|^{-1}$, whence

$$
\begin{equation*}
\pi[b, a]=\pi[a, b]^{-1} \tag{8}
\end{equation*}
$$

Thus we have the fundamental group at a,

$$
\begin{equation*}
\Gamma_{a}=\pi_{1}(\mathfrak{H}, a):=\pi[a, a] . \tag{9}
\end{equation*}
$$

It is easily seen that, for $g \in \pi[a, b]$, we have

$$
\begin{equation*}
\Gamma_{a} \cdot g=\pi[a, b]=g \cdot \Gamma_{b} . \tag{10}
\end{equation*}
$$

Let $T \subset A$ be a spanning tree, and put

$$
\begin{equation*}
\pi_{\mathrm{l}}(\mathfrak{A}, T)=\pi(\mathfrak{A}) /(e=1 \text { for all } e \in E T) . \tag{11}
\end{equation*}
$$

Then (cf. [2, (1.20)]) the projection

$$
q: \pi(\mathfrak{A l}) \rightarrow \pi_{\mathrm{I}}(\mathfrak{A}, T)
$$

restricts, for each $a \in V A$, to an isomorphism

$$
\begin{equation*}
q_{a}: \pi_{1}(\mathfrak{U}, a) \xrightarrow{\cong} \pi_{1}(\mathfrak{U}, T) . \tag{12}
\end{equation*}
$$

The inverse σ_{a} of q_{a} is given as follows. For $a, b \in V A$, let $\gamma_{a, b}=\left(e_{1}, \ldots, e_{n}\right)$ denote the edge path in T from a to b, and put $g_{a, b}=\left|\gamma_{a, b}\right|=e_{1} \cdots e_{n} \in \pi[a, b]$. Then σ_{a} is given on generators by $\sigma_{a}(s)=g_{a, b} s g_{a, b}^{-1}$ for $s \in \mathscr{A}_{b}$, and $\sigma_{a}(e)=g_{a, \partial_{0} e} e g_{a, \partial_{1} e}^{-1}$ for $e \in E A$. Since $g_{a, b} g_{b, c}=g_{a, c}$, it follows that the following diagram is commutative:

2.3. The covering tree $X_{a}=(\widetilde{\mathfrak{H}, a})$, at a base point $a \in V A$, has vertices

$$
V X_{a}=\coprod_{b \in V A} \pi[a, b] / \mathscr{A}_{b}
$$

For $g \in \pi[a, b]$ we let $[g]_{b}$ denote its class in $\pi[a, b] / \mathscr{A}_{b}$. The group $\Gamma_{a}=\pi_{1}(\mathfrak{N}, a)$ acts on X_{a} so that $g[h]_{b}=[g h]_{b}$ for $g \in \Gamma_{a}, h \in \pi[a, b]$. The orbits are the sets $\pi[a, b] / \mathscr{A}_{b}$, which are also the fibers of the projection $p: X_{a} \rightarrow A=\Gamma_{a} \backslash X_{a}$.

To calculate the length function

$$
l_{a}\left(=l_{X_{a}}\right): \Gamma_{a}=\pi_{1}(\mathfrak{H}, a) \rightarrow \mathbf{Z}
$$

we use the following result from ([4, Lemma 1.1]):
For $x=[g]_{b} \in \pi[a, b] / \mathscr{L}_{b}$ and $y=[h]_{c} \in \pi[a, c] / \mathscr{A}_{c}$, their distance in X_{a} is given by

$$
\begin{equation*}
d_{X_{a}}(x, y)=L_{\mathfrak{U}}\left(g^{-1} h\right) \tag{1}
\end{equation*}
$$

where $g^{-1} h \in \pi[b, c]$. For $a=b=c$ and $g=1$, so that $x=[1]_{a}$, this gives $L_{\mathfrak{U}}(h)=d(h x, x)$ for $h \in \Gamma_{a}$.

Now for $g \in \Gamma_{a}$ and $x=[h]_{b} \in \pi[a, b] / \mathscr{A}_{b}$, we have $d(x, g x)=d\left([h]_{b},[g h]_{b}\right)=$ $L_{\mathfrak{Q}(}\left(h^{-1} g h\right)$. Now from 1.2(5) it follows that

$$
\begin{equation*}
l_{a}(g)=\operatorname{Min}_{\substack{b \in f \\ h \in \mathbb{T}, \vec{a}]}} L_{\mathfrak{Y}}\left(h^{-1} g h\right) \tag{2}
\end{equation*}
$$

If $g \in \pi[b, a]$ then we have an isomorphism of tree actions

$$
\begin{equation*}
(\operatorname{ad}(g), g \cdot):\left(\Gamma_{a}, X_{a}\right) \rightarrow\left(\Gamma_{b}, X_{b}\right) \tag{3}
\end{equation*}
$$

given by $\operatorname{ad}(g)(h)=g h g^{-1}$ for $h \in \Gamma_{a}$, and $g \cdot[h]_{c}=[g h]_{c}$ for $h \in \pi[a, c]$. (Cf. [2, (1.22)]). It follows then from Section 1.3 that, for $h \in \Gamma_{a}$,

$$
\begin{equation*}
l_{b}\left(g h g^{-1}\right)=l_{a}(h) \tag{4}
\end{equation*}
$$

2.4. Quotient graphs of groups (cf. [2, Section 3]). Let X be a Γ-tree without inversions. The construction of a "quotient graph of groups"

$$
\Gamma \backslash X=\mathfrak{A}=(A, \mathscr{A})
$$

depends on choosing subtrees

$$
T \subset S \subset X,
$$

and elements $\left(g_{x}\right)_{x \in V S}$ of Γ, so that, if $p: X \rightarrow A:=\Gamma \backslash X$ is the natural projection, then $p: V T \rightarrow V A$ is bijective, $p: E S \rightarrow E A$ is bijective, and $g_{x} x \in V T$ for all $x \in V S$, with $g_{x}=1$ if $x \in V T$. Denoting the inverses of the above bijections by $a \mapsto a^{X}$ and $e \mapsto e^{X}$, respectively, we have $\mathscr{A}_{a}=\Gamma_{a}^{x}, \mathscr{A}_{e}=\Gamma_{e^{x}}$, and, if $\partial_{0}(e)=a$ and $\partial_{0}\left(e^{X}\right)=x$, then $\alpha_{e}=\operatorname{ad}\left(g_{x}\right): \mathscr{A}_{e} \rightarrow \mathscr{A}_{a}$.

The homomorphism $\psi: \pi(\mathscr{H}) \rightarrow \Gamma$ is then defined on generators by $\psi(g)=g$ for $g \in \mathscr{A}_{a}=\Gamma_{a^{x}}$, and $\psi(e)=g_{e}:=g_{0} g_{1}^{-1}$ for $e \in E A$, where $g_{i}=g_{i_{i}\left(e^{\Downarrow}\right)}(i=0,1)$. Then ψ restricts to isomorphisms $\psi_{a}: \Gamma_{a}=\pi_{1}(\mathfrak{A}, a) \rightarrow \Gamma$ for each $a \in V A$.

There is further a ψ_{a}-equivariant isomorphism of trees, $\tau_{x}: X_{a}=(\widetilde{\mathscr{A}, a}) \rightarrow X$ defined on $[g]_{b} \in \pi[a, b]_{b} \subset V X_{a}$ by $\tau_{a}\left([g]_{b}\right)=\psi(g) \cdot b^{X}$. Thus we have an isomorphism of tree actions,

$$
\left(\psi_{a}, \tau_{a}\right):\left(\Gamma_{a}, X_{a}\right) \rightarrow(\Gamma, X)
$$

2.5. Adapting to an automorphism. Keep the notation of 2.4 above, and let $\rho: \Gamma \rightarrow$ $G=\operatorname{Aut}(X)$ define the given Γ-action on X. Let $\alpha \in \operatorname{Aut}(\Gamma)$, and let X_{α} denote the tree X with Γ-action defined by $\rho \circ \alpha$.

Suppose that $\alpha \in \operatorname{Aut}(\Gamma)_{(\rho)}$. This means that there is a $\lambda \in G$ which is a Γ isomorphism $\lambda: X \rightarrow X_{x}: \lambda(\rho(g) x)=\rho(\alpha(g)) \lambda(x)$, for $g \in \Gamma$ and $x \in X$. Thus we have the stabilizers

$$
\begin{equation*}
\Gamma_{\rho, x}=\Gamma_{\rho \circ \alpha, \hat{\lambda}(x)} \tag{1}
\end{equation*}
$$

where $\Gamma_{p, x}=\{g \in \Gamma \mid \rho(g) x=x\}$, and similarly for $\Gamma_{\rho \circ \alpha, j(x)}$.
Let $T \subset S \subset X$ and $\left(g_{x}\right)_{x \in V S}$ be the fundamental data as in 2.4 above used to construct

$$
\Gamma \backslash X=\mathfrak{A}=(A, \mathscr{A})
$$

Then we can use $i T \subset \hat{\lambda} \subseteq \subset X_{x}$ as fundamental domains for the $\rho \circ \alpha$-action. Further, for $x \in V S$, we have $g_{x} \cdot x \in T$ (and $g_{x}=1$ for $x \in V T$), so $\rho\left(x\left(g_{x}\right)\right) \lambda(x)=\lambda\left(\rho\left(g_{x}\right) x\right) \in$ $V \lambda T$ (and $g_{x}=1$ for $\lambda x \in V \lambda T$). Thus, defining $g_{i x}^{\prime}=g_{x}$, we can use $\left(g_{\lambda x}^{\prime}\right)_{i x \in V ; S}$ in defining $\mathfrak{A}^{\prime}=\Gamma \ X_{\alpha}$. It then follows from the construction (see 2.4) that

$$
\mathfrak{A}^{\prime}=\mathfrak{A}!
$$

In fact, for $a \in V A$ and $e \in E A$ let $\left(a^{X}\right)^{\prime}$ and $\left(e^{X}\right)^{\prime}$ denote their lifts to $V \lambda T$ and $E \lambda S$, respectively. Then $\left(a^{X}\right)^{\prime}=\lambda a^{X}$ and $\left(e^{X}\right)^{\prime}=\lambda e^{X}$, clearly. Further,

$$
g_{i}^{\prime}:=g_{\left.\hat{i} i t^{2} e^{x}\right)^{\prime}}^{\prime}=g_{\hat{i}_{i, i} e^{x}}^{\prime}=g_{i \hat{i} \hat{e}^{x}}^{\prime}=g_{\hat{i}_{i} e^{x}}=g_{i}
$$

Hence, if $a=\hat{o}_{0} e$, then

$$
x_{e}=\operatorname{ad}\left(g_{0}\right): \mathscr{A}_{e}=\Gamma_{\rho, e^{x}} \rightarrow \mathscr{A}_{a}=\Gamma_{\rho, a^{x}}
$$

coincides with

$$
\alpha_{e}^{\prime}=\operatorname{ad}\left(g_{0}^{\prime}\right): \mathscr{A}_{e}^{\prime}=\Gamma_{\rho \circ x, \lambda_{e}^{x}} \rightarrow \mathscr{A}_{a}^{\prime}=\Gamma_{\rho \circ x, \dot{\beta} x} .
$$

Further, the homomorphisms $\psi: \pi(\mathfrak{H}) \rightarrow \Gamma$ and $\psi^{\prime}: \pi\left(\mathfrak{Q}^{\prime}\right) \rightarrow \Gamma$ are both the inclusion on $\mathscr{A}_{a}=\mathscr{A}_{a}^{\prime}$, and on $e \in E A$ as above,

$$
\psi^{\prime}(e)=g_{0}^{\prime} g_{1}^{\prime-1}=g_{0} g_{1}^{-1}=\psi(e)
$$

Thus

$$
\psi^{\prime}=\psi: \pi(\mathfrak{A}) \rightarrow \Gamma
$$

For $a \in V A$ put $\Gamma_{a}=\pi_{1}(\mathfrak{A}, a)=\Gamma_{a}^{\prime}$ and $X_{a}=(\widehat{\mathfrak{A}, a})=X_{a}^{\prime}$. Then we have tree isomorphisms

$$
\tau_{a}: X_{a} \rightarrow X \quad \text { and } \quad \tau_{a}^{\prime}: X_{a}^{\prime} \rightarrow X_{\alpha}
$$

which are equivariant for $\psi_{a}: \Gamma_{a} \rightarrow \Gamma$. Let $[g]_{b} \in \pi[a, b] / \mathscr{A}_{b} \subset V X_{a}$. Then, by definition (cf. 2.4),

$$
\tau_{a}\left([g]_{b}\right)=\psi(g) \cdot b^{X}
$$

and

$$
\begin{aligned}
\tau_{a}^{\prime}\left([g]_{b}\right) & =\rho(\alpha(\psi(g)))\left(b^{X}\right)^{\prime} \\
& =\rho(\alpha(\psi(g))) \hat{\lambda}\left(b^{X}\right) \\
& =\lambda\left(\rho(\psi(g)) b^{X}\right) \\
& =\lambda\left(\tau_{a}\left([g]_{b}\right)\right) .
\end{aligned}
$$

Thus we have a commutative diagram

2.6 Reduced paths. Let

$$
\begin{equation*}
\gamma=\left(g_{0}, e_{1}, g_{1}, \ldots, g_{n-1}, e_{n}, g_{n}\right) \tag{1}
\end{equation*}
$$

be a path in \mathfrak{N}, with vertex sequence $a_{0}, a_{1}, \ldots, a_{n}$, as in 2.2(1). We call γ reduced if, for $i=1, \ldots, n-1$, either $e_{i+1} \neq \bar{e}_{i}$ or $e_{i+1}=\bar{e}_{i}$ and $g_{i} \notin \alpha_{\bar{e}_{i}}\left(\mathscr{A}_{e_{i}}\right)$. When $a_{0}=a_{n}$ we call γ cyclically reduced if it is reduced, and either $e_{n} \neq \bar{e}_{1}$, or $e_{n}=\bar{e}_{1}$ and $g_{n} g_{0} \notin \alpha_{e_{1}}\left(\mathscr{A}_{e_{1}}\right)$.

If $g \in \pi[a, b]$ then $g=|\gamma|$ for a reduced path $\gamma \in P[a, b]$, and length $(\gamma)=L_{\mathfrak{U}}(g)$ for any such γ (cf. [2, (1.10)]).
2.7. Lemma. For any closed path γ in \mathfrak{N}, there are paths γ_{1}, γ_{2} such that $|\gamma|=$ $\left|\gamma_{1} \gamma_{2} \gamma_{1}^{-1}\right|, \gamma_{1}$ is reduced, and γ_{2} is cyclically reduced.

Proof. Let

$$
\gamma=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right) .
$$

If γ is cyclically reduced, then let $\gamma_{2}=\gamma$, and let $\left|\gamma_{1}\right|=1$. Now suppose that γ is reduced, but not cyclically reduced. We prove the lemma by induction on $L_{\mathfrak{g}}(|\gamma|)=n$. Since γ is not cyclically reduced, $e_{1}=\bar{e}_{n}$ and

$$
g_{n} g_{0}=\alpha_{\bar{e}_{n}}(s) \in \alpha_{\bar{e}_{n}}\left(\mathscr{A}_{e_{n}}\right) .
$$

Since $e \alpha_{\bar{e}}(s) \bar{e}=\alpha_{e}(s)$ for all $s \in \mathscr{A}_{e}$,

$$
e_{n} g_{n} g_{0} e_{1}=e_{n} g_{n} g_{0} \bar{e}_{n}=e_{n} \alpha_{\bar{e}_{n}}(s) \bar{e}_{n}=\alpha_{e_{n}}(s)
$$

Let

$$
\begin{aligned}
\gamma^{\prime} & =\left(g_{1}, e_{2}, \ldots, e_{n-1}, g_{n-1} e_{n} g_{n} g_{0} e_{1}\right) \\
& =\left(g_{1}, e_{2}, \ldots, e_{n-1}, g_{n-1} \alpha_{e_{n}}(s)\right) .
\end{aligned}
$$

Then $L_{\mathfrak{2}}\left(\left|\gamma^{\prime}\right|\right)=n-2$. By induction, $\left|\gamma^{\prime}\right|=\left|\gamma_{1}^{\prime} \gamma_{2}^{\prime} \gamma_{1}^{\prime-1}\right|$ for some paths γ_{1}^{\prime} and γ_{2}^{\prime}, where γ_{2}^{\prime} is cyclically reduced. So

$$
\begin{aligned}
|\gamma| & =\left(g_{0} e_{1}\right)\left(g_{1} e_{2} \cdots e_{n-1} g_{n-1} e_{n} g_{n} g_{0} e_{1}\right)\left(g_{0} e_{1}\right)^{-1} \\
& =\left(g_{0} e_{1}\right)\left(\left|\gamma^{\prime}\right|\right)\left(g_{0} e_{1}\right)^{-1} \\
& =\left(g_{0} e_{1}\right)\left|\gamma_{1}^{\prime} \gamma_{2}^{\prime} \gamma_{1}^{\prime-1}\right|\left(g_{0} e_{1}\right)^{-1} .
\end{aligned}
$$

Let γ_{1} be a reduced path representing $\left(g_{0} e_{1}\right)\left|\gamma_{1}^{\prime}\right|$, and let $\gamma_{2}=\gamma_{2}^{\prime}$. Then

$$
|\gamma|=\left|\gamma_{1} \gamma_{2} \gamma_{1}^{-1}\right|,
$$

where γ_{2} is cyclically reduced.

3. The category of graphs of groups

This section is a resume of material from [2, Section 2].
3.1. Morphisms of graphs of groups (cf. [2, Section 2]). A morphism

$$
\Phi=(\phi,(\gamma)): \mathfrak{A}=(A, \mathscr{A}) \rightarrow \mathfrak{H}^{\prime}=\left(A^{\prime}, \mathscr{A}^{\prime}\right)
$$

of graphs of groups consists of a graph morphism ϕ (or ϕ_{A}): $A \rightarrow A^{\prime}$, group homomorphisms

$$
\phi_{a}: \mathscr{A}_{a} \rightarrow \mathscr{A}_{\phi(a)}^{\prime} \quad(a \in V A) \quad \text { and } \quad \phi_{e}=\phi_{\bar{e}}: \mathscr{A}_{e} \rightarrow \mathscr{A}_{\phi(e)}^{\prime}(e \in E A),
$$

and families $\left(\gamma_{a}\right)_{a \in V A},\left(\gamma_{e}\right)_{e \in E A}$ in $\pi\left(\mathfrak{I t}^{\prime}\right)$, satisfying the following conditions.

For $a \in V A, \gamma_{a} \in \pi_{1}\left(\mathfrak{I}^{\prime}, \phi(a)\right)$. For $e \in E A, \partial_{0} e=a$, we have $\delta_{e}:=\gamma_{a}^{-1} \gamma_{e} \in \mathscr{A}_{\phi(a)}^{\prime}$, and the following diagram commutes:

The identity morphism of \mathfrak{Q} is $I=(\phi,(\gamma))$ given by $\phi_{A}=\mathrm{Id}_{A}, \phi_{u}=\mathrm{Id}_{\mathscr{G}_{4}}$, and $\gamma_{u}=1$ for $u \in V A \cup E A$.

3.2. The induced homomorphism

$$
\Phi\left(\text { or } \Phi_{\pi}\right): \pi(\mathfrak{H}) \rightarrow \pi\left(\mathfrak{H}^{\prime}\right)
$$

is defined on generators by $\left.\Phi\right|_{\mathscr{A}_{a}}=\operatorname{ad}\left(\gamma_{a}\right) \circ \phi_{a}$, i.e. $\Phi(s)=\gamma_{a} \phi_{a}(s) \gamma_{a}^{-1}$ for $s \in \mathscr{A}_{a}$, and $\Phi(e)=\gamma_{e} \phi(e) \gamma_{\bar{e}}^{-1}$ for $e \in E A$. For $a, b \in V A, \Phi$ restricts to maps

$$
\Phi: \pi^{2 \mathrm{IL}}[a, b] \rightarrow \pi^{22^{\prime}}[\phi(a), \phi(b)] .
$$

In particular, for $a=b$, we have the homomorphism

$$
\Phi_{a}: \pi_{1}(\mathfrak{A l}, a) \rightarrow \pi_{1}\left(\mathfrak{H}^{\prime}, \phi(a)\right) .
$$

3.3. The tree morphism

$$
\tilde{\Phi}_{a}:(\widetilde{\mathfrak{H}, a}) \rightarrow\left(\widehat{\mathfrak{A}^{\prime}, \phi(a)}\right),
$$

which is Φ_{a}-equivariant, is defined on the vertices $\pi^{2 \mathrm{I}}[a, b] / \mathscr{A}_{b}$ by

$$
\tilde{\Phi}_{a}\left([g]_{b}\right)=\left[\Phi(g) \gamma_{a}\right]_{\phi(a)} .
$$

Thus we have a morphism of tree actions

$$
\left(\Phi_{a}, \tilde{\Phi}_{a}\right):\left(\Gamma_{a}, X_{a}\right) \rightarrow\left(\Gamma_{\phi(a)}^{\prime}, X_{\phi(a)}^{\prime}\right)
$$

where $\Gamma_{a}=\pi_{1}(\mathfrak{H}, a), X_{a}=(\widetilde{\mathfrak{H}, a})$, and similarly for $\Gamma_{\phi(a)}^{\prime}$ and $X_{\phi(a)}^{\prime}$.
3.4. $\delta \Phi=(\phi,(\delta))$, and the path map. The morphism $\delta \Phi$ is obtained by preserving ϕ and $\delta_{e}(e \in E A)$, but "suppressing" all $\gamma_{a}(a \in V A)$. Thus $\delta \Phi=\left(\phi,\left(\gamma^{\prime}\right)\right)$, where $\gamma_{a}^{\prime}=1$ $(a \in V A)$, and $\gamma_{e}^{\prime}=\delta_{e}=\delta_{e}^{\prime}(e \in E A)$ (cf. [2, (2.9)]). We have [2, (2.9)]

$$
\begin{equation*}
\Phi_{a}=\operatorname{ad}\left(\gamma_{a}\right) \circ(\delta \Phi)_{a}: \pi_{1}(\mathfrak{H}, a) \rightarrow \pi_{1}\left(\mathfrak{L}^{\prime}, \phi(a)\right) . \tag{1}
\end{equation*}
$$

Evidently,

$$
\begin{equation*}
\delta(\delta \Phi)=\delta \Phi \tag{2}
\end{equation*}
$$

For a path $\gamma=\left(g_{0}, e_{1}, \ldots, e_{n}, g_{n}\right)$ in \mathfrak{U} we define the path

$$
\begin{equation*}
\delta \Phi(\gamma)=\left(\phi_{a_{0}}\left(g_{0}\right) \delta_{e_{1}}, \phi\left(e_{1}\right), \delta_{\bar{e}_{1}}^{-1} \phi_{a_{1}}\left(g_{1}\right) \delta_{e_{2}}, \phi\left(e_{2}\right), \ldots, \phi\left(e_{n}\right), \delta_{\bar{e}_{n}}^{-1} \phi_{a_{n}}\left(g_{n}\right)\right) \tag{3}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \delta_{\bar{e}_{i}}^{-1} \in \mathscr{A}_{\phi\left(\hat{e}_{0} \bar{e}_{i}\right)}^{\prime}=\mathscr{A}_{\phi\left(\hat{c}_{1} e_{i}\right)}^{\prime}=\mathscr{A}_{\hat{c}_{1} \phi\left(e_{i}\right)}^{\prime}, \\
& \phi_{a_{i}}\left(g_{i}\right) \in \mathscr{A}_{\phi\left(\hat{c}_{1} e_{i}\right)}^{\prime}=\mathscr{A}_{\hat{c}_{i}^{\prime} \phi\left(e_{i}\right)}^{\prime}, \\
& \delta_{e_{i+1}} \in \mathscr{A}_{\phi\left(\hat{e}_{1} e_{i+1}\right)}^{\prime}=\mathscr{A}_{\hat{c}_{1} \phi\left(e_{i}\right)}^{\prime} .
\end{aligned}
$$

So

$$
\delta_{\bar{e}_{i}}^{-1} \phi_{a_{i}}\left(g_{i}\right) \delta_{e_{i-1}} \in \mathscr{A}_{\delta_{1} \phi\left(e_{i}\right)}^{\prime} \quad(1 \leq i \leq n-1),
$$

$\phi_{a_{0}}\left(g_{0}\right) \delta_{e_{1}} \in \mathscr{A}_{\hat{c}_{0} \phi\left(e_{1}\right)}^{\prime}$, and $\delta_{\bar{e}_{n}}^{-1} \phi_{a_{n}}\left(g_{n}\right) \in \mathscr{A}_{\hat{\delta}_{1} \phi\left(e_{n}\right)}^{\prime}$. Note that $\left(\phi\left(e_{1}\right), \ldots, \phi\left(e_{n}\right)\right)$ is an edge path in A^{\prime}. Thus

$$
\begin{equation*}
\delta \Phi(\gamma) \text { is a path in } \mathfrak{A}^{\prime}, \text { and }|\delta \Phi(\gamma)|=(\delta \Phi)(|\gamma|) \tag{4}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\text { If } g \in \pi^{\mathfrak{Q}}[a, b] \text { then }(\delta \Phi)(g) \in \pi^{\mathfrak{U N}^{\prime}}[\phi(a), \phi(b)] \text { and } L_{\mathfrak{U}^{\prime}}\left((\delta \Phi(g)) \leq L_{\mathfrak{U}}(g) .\right. \tag{5}
\end{equation*}
$$

In fact, we can write $g=|\gamma|$ with γ reduced. Then $L_{\mathfrak{N}}(g)=$ length (γ), while

$$
L_{\mathscr{A}^{\prime}}(\delta \Phi(g)) \leq \operatorname{length}(\delta \Phi(\gamma))=\operatorname{length}(\gamma)
$$

3.5. Lemma. Assume that
(i) ϕ_{A} is injective,
(ii) ϕ_{a} is injective $\forall a \in V A$, and
(iii) ϕ_{e} is an isomorphism $\forall e \in E A$.

Then $\delta \Phi$ preserves (cyclically) reduced paths.

Proof. Let $\gamma=\left(e_{1}, g_{1}, e_{2}\right)$ be a reduced path, and let $\partial_{0} e_{2}=a$. We only need to show that

$$
\delta \Phi(\gamma)=\left(\phi\left(e_{1}\right), \delta_{\bar{e}_{1}}^{-1} \phi_{a}\left(g_{1}\right) \delta_{e_{2}}, \phi\left(e_{2}\right)\right)
$$

is still a reduced path. Since γ is reduced, either $e_{1} \neq \bar{e}_{2}$, or else $e_{1}=\bar{e}_{2}$ and $g_{1} \notin$ $\alpha_{\bar{e}_{1}}\left(\mathscr{A}_{e_{1}}\right)$. Recall that ϕ is injective. If $e_{1} \neq \bar{e}_{2}$, then $\phi\left(e_{1}\right) \neq \phi\left(\bar{e}_{2}\right)$, and $\delta \Phi(\gamma)$ is reduced. Now suppose that $e_{1}=\bar{e}_{2}$ and $g_{1} \notin \alpha_{\bar{e}_{1}}\left(\mathscr{A}_{e_{1}}\right)$. Since $e_{1}=\bar{e}_{2}, \phi\left(e_{1}\right)=\phi\left(\bar{e}_{2}\right)$. If $\delta \Phi(\gamma)$ is not reduced, then

$$
\delta_{\bar{e}_{1}}^{-1} \phi_{a}\left(g_{1}\right) \delta_{e_{2}}=\alpha_{\phi\left(\bar{e}_{1}\right)}(s)
$$

for some $s \in \mathscr{A}_{\phi\left(e_{1}\right)}^{\prime}$. Thus

$$
\phi_{a}\left(g_{1}\right)=\delta_{\bar{e}_{1}} \alpha_{\phi\left(\bar{e}_{1}\right)}(s) \delta_{e_{2}}^{-1}=\delta_{e_{2}} \alpha_{\phi\left(e_{2}\right)}(s) \delta_{e_{2}}^{-1}
$$

Since $\phi_{e_{2}}$ is an isomorphism,

$$
s \in \mathscr{A}_{\phi\left(e_{1}\right)}^{\prime}=\mathscr{A}_{\phi\left(e_{2}\right)}^{\prime}=\phi_{e_{2}}\left(\mathscr{A}_{e_{2}}\right) .
$$

Suppose that $s=\phi_{e_{2}}\left(s_{1}\right)$ for some $s_{1} \in \mathscr{A}_{e_{2}}$. Then

$$
\phi_{a}\left(g_{1}\right)=\delta_{e_{2}} \alpha_{\phi\left(e_{2}\right)}(s) \delta_{e_{2}}^{-1}=\delta_{e_{2}} \alpha_{\phi\left(e_{2}\right)}\left(\phi_{e_{2}}\left(s_{1}\right)\right) \delta_{e_{2}}^{-1} .
$$

By 3.1(1),

$$
\delta_{e_{2}} \alpha_{\phi\left(e_{2}\right)}\left(\phi_{e_{2}}\left(s_{1}\right)\right) \delta_{e_{2}}^{-1}=\phi_{a}\left(\alpha_{e_{2}}\left(s_{1}\right)\right)
$$

So $\phi_{a}\left(g_{1}\right)=\phi_{a}\left(\alpha_{e_{2}}\left(s_{1}\right)\right)$. Since ϕ_{a} is injective,

$$
g_{1}=\alpha_{e_{2}}\left(s_{1}\right) \in \alpha_{e_{2}}\left(\mathscr{A}_{e_{2}}\right)=\alpha_{\bar{e}_{1}}\left(\mathscr{A}_{e_{1}}\right)
$$

which contradicts the fact that γ is reduced. Thus $\delta \Phi(\gamma)$ is reduced.
3.6. The composition of morphisms (cf. [2, (2.11)]),

$$
\begin{equation*}
\mathfrak{A} \xrightarrow{\Phi=(\phi,(\gamma))} \mathfrak{A}^{\prime} \xrightarrow{\Phi^{\prime}=\left(\phi^{\prime},\left(\gamma^{\prime}\right)\right)} \mathfrak{A}^{\prime \prime}, \tag{1}
\end{equation*}
$$

is given by

$$
\begin{equation*}
\Phi^{\prime \prime}=\Phi^{\prime} \circ \Phi=\left(\phi^{\prime \prime},\left(\gamma^{\prime \prime}\right)\right): \mathfrak{A} \rightarrow \mathfrak{\mathfrak { A }}^{\prime \prime} \tag{2}
\end{equation*}
$$

defined by $\phi_{A}^{\prime \prime}=\phi_{A^{\prime}}^{\prime} \circ \phi_{A}$, and, for $u \in V A \cup E A, \phi_{u}^{\prime \prime}=\phi_{\phi(u)}^{\prime} \circ \phi_{u}$, and $\gamma_{u}^{\prime \prime}=\Phi^{\prime}\left(\gamma_{u}\right) \gamma_{\phi(u)}^{\prime}$. From [2, (2.11)], we have, for $e \in E_{0}(a)$,

$$
\begin{equation*}
\delta_{e}^{\prime \prime}=\phi_{\phi(a)}^{\prime}\left(\delta_{e}\right) \cdot \delta_{\phi(e)}^{\prime} \tag{3}
\end{equation*}
$$

We further have

$$
\begin{equation*}
\Phi_{\pi}^{\prime \prime}=\Phi_{\pi}^{\prime} \circ \Phi_{\pi}: \pi(\mathfrak{H}) \rightarrow \pi\left(\mathfrak{H}^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

and, for $a \in V A$,

$$
\begin{equation*}
\left(\Phi_{a}^{\prime \prime}, \tilde{\Phi}_{a}^{\prime \prime}\right)=\left(\Phi_{\phi(a)}^{\prime}, \tilde{\Phi}_{\phi(a)}^{\prime}\right) \circ\left(\Phi_{a}, \tilde{\Phi}_{a}\right):\left(\Gamma_{a}, X_{a}\right) \rightarrow\left(\Gamma_{\phi^{\prime \prime}(a)}^{\prime \prime}, X_{\phi^{\prime \prime}(a)}^{\prime \prime}\right) \tag{5}
\end{equation*}
$$

where we write $\Gamma_{a}=\pi_{1}(\mathfrak{A}, a), X_{a}=(\widetilde{\mathfrak{H}, a})$, and similarly for $\Gamma_{\phi^{\prime \prime}(a)}^{\prime \prime}$ and $X_{\phi^{\prime \prime}(a)}^{\prime \prime}$.
We further note that

$$
\begin{equation*}
\delta\left(\Phi^{\prime} \circ \Phi\right)=\delta \Phi^{\prime} \circ \delta \Phi \tag{6}
\end{equation*}
$$

To see this, put $\delta \Phi=(\phi,(\delta)), \delta \Phi^{\prime}=\left(\phi^{\prime},\left(\delta^{\prime}\right)\right)$, and $\delta \Phi^{\prime \prime}=\left(\phi^{\prime \prime},\left(\delta^{\prime \prime}\right)\right)$. The composition formulas for $\phi_{A}^{\prime \prime}$ and $\phi_{u}^{\prime \prime}(u \in V A \cup E A)$ are unaffected by δ, hence still valid. Thus the only thing to be checked is that, for $e \in E_{0}(a), a \in V A$, we have

$$
\begin{equation*}
\delta_{e}^{\prime \prime}=\left(\delta \Phi^{\prime}\right)_{\phi_{A}(a)}\left(\delta_{e}\right) \cdot \delta_{\phi_{A}(e)}^{\prime} \tag{7}
\end{equation*}
$$

Since $\delta_{e} \in \mathscr{A}_{\phi_{A}(a)}^{\prime}$ and $\left.\left(\delta \Phi^{\prime}\right)_{\phi_{A}(a)}\right|_{\phi_{\phi(a)}^{\prime}} ^{\prime}=\phi_{\phi_{A}(a)}^{\prime}$, (7) follows from (3).

The above notions of morphism and composition make graphs of groups the objects of a category, with identity morphisms as in 3.1. In particular,
Φ is an isomorphism iff ϕ_{A} and each $\phi_{u}(u \in V A \cup E A)$ is an isomorphism. (8)
In this case,

$$
\begin{align*}
& \Phi^{-1}=\left(\phi^{\prime},\left(\gamma^{\prime}\right)\right) \text { is given by } \phi_{A}^{\prime}=\phi_{A}^{-1} \\
& \text { and, for } u \in V A \cup E A, \phi_{u}^{\prime}=\phi_{u}^{-1}, \text { and } \gamma_{\phi(u)}^{\prime}=\Phi^{-1}\left(\gamma_{u}\right)^{-1} \text {. } \tag{9}
\end{align*}
$$

3.7. The group $\operatorname{Aut}(\mathscr{H})$ is now defined, and we have the exact sequence

$$
1 \rightarrow \operatorname{Aut}^{A}(\mathfrak{H}) \rightarrow \operatorname{Aut}(\mathfrak{H}) \xrightarrow{q_{A}} \operatorname{Aut}(A),
$$

where, for $\Phi=(\phi,(\gamma)), q_{A}(\Phi)=\phi_{A}$. Thus $\Phi \in \operatorname{Aut}^{A}(\mathfrak{H})$ iff $\phi_{A}=\mathrm{Id}_{A}$, in which case $\phi_{u} \in \operatorname{Aut}\left(\mathscr{A}_{u}\right)$ for all $u \in V A \cup E A$. We have further a homomorphism

$$
\operatorname{Aut}^{A}(\mathfrak{A}) \xrightarrow{q}\left[\prod_{a \in V A} \operatorname{Aut}\left(\mathscr{A}_{a}\right) \times \prod_{e \in E A} \operatorname{Aut}\left(\mathscr{A}_{e}\right)\right]
$$

given, on $\Phi=(\phi,(\gamma))$, by

$$
q(\Phi)=\left(\left(\phi_{a}\right)_{a \in V A},\left(\phi_{e}\right)_{e \in E A}\right) .
$$

3.8. The homomorphism $\sigma_{a}: \operatorname{Aut}(\mathfrak{A}) \rightarrow \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}$. For $a \in V A$ we have $\Gamma_{a}=\pi_{1}(\mathfrak{H}, a)$, the Γ_{a}-tree $X_{a}=(\widehat{\mathfrak{H}, a})$, and its hyperbolic length function $l_{a}=l_{X_{a}}$.

Fix a spanning tree $T \subset A$. For $a, b \in V A$ let $\gamma_{a, b}=\left(e_{1}, \ldots, e_{n}\right)$ denote the reduced edge-path in T from a to b, and put $g_{a, b}=\left|\gamma_{a, b}\right|=e_{1} \cdots e_{n} \in \pi[a, b]$. Note that $g_{a, b} g_{b, c}=g_{a, c}$. Further, from 2.3(3) we have an isomorphism of tree actions,

$$
\begin{equation*}
\left(\operatorname{ad}\left(g_{b, a}\right), g_{b, a}\right):\left(\Gamma_{a}, X_{a}\right) \rightarrow\left(\Gamma_{b}, X_{b}\right) . \tag{1}
\end{equation*}
$$

Let $\Phi=(\phi,(\gamma)) \in \operatorname{Aut}(\mathscr{H})$. Then from (1) and 3.3 we have the isomorphisms of group actions

$$
\begin{equation*}
\left(\Gamma_{a}, X_{a}\right) \xrightarrow{\left(\Phi_{a}, \tilde{\Phi}_{a}\right)}\left(\Gamma_{\phi(a)}, X_{\phi(a)}\right) \xrightarrow{(\operatorname{ad}(g), g \cdot)}\left(\Gamma_{a}, X_{a}\right) \tag{2}
\end{equation*}
$$

where $g=g_{a, \phi(a)}$. This yields

$$
\begin{align*}
& \Phi_{(a)}:=\operatorname{ad}\left(g_{a, \phi(a)}\right) \circ \Phi_{a}, \\
& \tilde{\Phi}_{(a)}:=\left(g_{a, \phi(a)}\right) \circ \tilde{\Phi}_{a} \tag{3}
\end{align*}
$$

so that

$$
\begin{equation*}
\left(\Phi_{(a)}, \tilde{\Phi}_{(a)}\right):\left(\Gamma_{a}, X_{a}\right) \rightarrow\left(\Gamma_{a}, X_{a}\right) \text { is an isomorphism of tree actions. } \tag{4}
\end{equation*}
$$

It follows from Lemma 1.3 that
$\Phi_{(a)}$ preserves the length function l_{a}
From the commutative diagram

we see that

$$
\begin{equation*}
\tilde{\Phi}_{(a)} \text { induces } \phi_{A} \text { on } A=\Gamma_{a} \backslash X_{a} \text {. } \tag{6}
\end{equation*}
$$

Let $b \in V A$. We have a commutative diagram

where

$$
\begin{equation*}
h=g_{b, \phi(b)} \Phi\left(g_{b, a}\right) g_{a, \phi(a)}^{-1} . \tag{7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Phi_{(b)} \circ \operatorname{ad}\left(g_{b, a}\right)=\operatorname{ad}(h) \circ \Phi_{(a)}, \tag{8}
\end{equation*}
$$

with h as in (7). Consequently,

$$
\begin{equation*}
\Phi_{(a)} \text { is an inner automorphism iff } \Phi_{(b)} \text { is an inner automorphism. } \tag{9}
\end{equation*}
$$

Now using (4) and (5) we can define the map

$$
\begin{equation*}
\sigma_{a}^{\prime}: \operatorname{Aut}(\mathfrak{H}) \rightarrow \operatorname{Aut}\left(\Gamma_{a}\right)_{l_{a}}, \quad \sigma_{a}^{\prime}(\Phi)=\Phi_{(a)} . \tag{10}
\end{equation*}
$$

However σ_{a}^{\prime} is not quite a homomorphism. For let $\Phi^{\prime}=\left(\phi^{\prime},\left(\gamma^{\prime}\right)\right) \in \operatorname{Aut}(\mathscr{A})$. Then

$$
\begin{equation*}
\sigma_{a}^{\prime}\left(\Phi^{\prime} \Phi\right)=\operatorname{ad}\left(g_{a, \phi^{\prime} \phi(a)}\right) \circ\left(\Phi^{\prime} \Phi\right)_{a} \tag{11}
\end{equation*}
$$

while, for $h \in \Gamma_{a}, g=g_{a, \phi(a)}$, and $g^{\prime}=g_{a, \phi^{\prime}(a)}$,

$$
\begin{aligned}
\sigma_{a}^{\prime}\left(\Phi^{\prime}\right) \sigma_{a}^{\prime}(\Phi)(h) & =g^{\prime}\left(\Phi_{a}^{\prime}\left(g \Phi_{a}(h) g^{-1}\right)\right) g^{\prime-1} \\
& =g^{\prime} \Phi^{\prime}(g) \Phi^{\prime}\left(\Phi_{a}(h)\right) \Phi^{\prime}(g)^{-1} g^{\prime-1} \\
& =\left(g^{\prime} \Phi^{\prime}(g)\right)\left(\Phi^{\prime} \Phi\right)_{a}(h)\left(g^{\prime} \Phi^{\prime}(g)\right)^{-1}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sigma_{a}^{\prime}\left(\Phi^{\prime}\right) \sigma_{a}^{\prime}(\Phi)=\operatorname{ad}\left(g_{a, \phi^{\prime}(a)} \Phi^{\prime}\left(g_{a, \phi(a)}\right)\right) \circ\left(\Phi^{\prime} \Phi\right)_{a} \tag{12}
\end{equation*}
$$

which differs from (11) by an inner automorphism

$$
\begin{equation*}
\operatorname{ad}\left(g_{a, \phi^{\prime}(a)} \Phi^{\prime}\left(g_{a, \phi(a)}\right) g_{a, \phi^{\prime} \phi(a)}^{-1}\right) \tag{13}
\end{equation*}
$$

of Γ_{a}. Of course,
On the group Aut ${ }^{A}(\mathfrak{A})=\left\{\Phi \mid \phi_{A}=\mathrm{Id}_{A}\right\}, \Phi_{(a)}=\Phi_{a}$, and
$\sigma_{a}^{\prime}: \operatorname{Aut}^{A}(\mathfrak{A}) \rightarrow \operatorname{Aut}\left(\Gamma_{a}\right)_{l_{a}}$ is a homomorphism.
In general composing σ_{a}^{\prime} with the projection $\operatorname{Aut}\left(\Gamma_{a}\right) \rightarrow \operatorname{Out}\left(\Gamma_{a}\right)$ thus defines a homomorphism

$$
\begin{equation*}
\sigma_{a}: \operatorname{Aut}(\mathfrak{H}) \rightarrow \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}} . \tag{15}
\end{equation*}
$$

We define

$$
\begin{equation*}
\operatorname{In} \operatorname{Aut}(\mathfrak{A l})=\operatorname{Ker}\left(\sigma_{a}\right) \tag{16}
\end{equation*}
$$

This is, in view of (9), independent of a, and we define

$$
\begin{equation*}
\operatorname{Out}(\mathfrak{H})=\operatorname{Aut}(\mathfrak{H}) / \operatorname{In} \operatorname{Aut}(\mathfrak{H}) \cong \operatorname{Im}\left(\sigma_{a}\right) . \tag{17}
\end{equation*}
$$

From (6) and Lemma 1.12 we see that,
If \mathfrak{A} is minimal non-abelian then $\operatorname{In} \operatorname{Aut}(\mathfrak{H}) \leq \operatorname{Aut}^{A}(\mathfrak{A})$.
We shall see, in Corollary 4.2 below, that the homomorphism (15) is surjective, and so

$$
\begin{equation*}
\operatorname{Out}(\mathfrak{H}) \cong \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}} . \tag{19}
\end{equation*}
$$

3.9. Morphisms induced on quotient graphs of groups (cf. [2, Section 4]). Let

$$
(\alpha, \lambda):(\Gamma, X) \rightarrow\left(\Gamma^{\prime}, X^{\prime}\right)
$$

be a morphism of tree actions: $\lambda(g x)=\alpha(g) \lambda(x)$ for $g \in \Gamma, x \in X$. Suppose that we have constructed quotient graphs of groups

$$
\begin{aligned}
& \Gamma \backslash X=\mathfrak{A}=(A, \mathscr{A}), \\
& \Gamma^{\prime} \backslash X^{\prime}=\mathfrak{A}^{\prime}=\left(A^{\prime}, \mathscr{A}^{\prime}\right)
\end{aligned}
$$

as in 2.4. Then one can construct a morphism

$$
\Phi=(\phi,(\gamma)): \mathfrak{U} \rightarrow \mathfrak{H}^{\prime}
$$

with the following properties. The diagram

commutes, hence so also does

Further we have a commutative diagram

Thus Φ "recovers" (α, λ) in the sense that it defines a commutative diagram of tree actions

Finally,
(α, λ) is an isomorphism iff Φ is an isomorphism.

4. Length preserving group automorphisms come from automorphisms of the quotient graph of groups

4.1. Theorem. Let X be a minimal non-abelian Γ-tree, with hyperbolic length function $l=l_{X}$. Form a quotient graph of groups

$$
\Gamma \backslash X=\mathfrak{A}=(A, \mathscr{A}),
$$

choose a base point $a_{0} \in V A$, and use 2.4 to identify $\Gamma=\Gamma_{a_{0}}:=\pi_{1}\left(\mathcal{A}, a_{0}\right)$ and $X=X_{a_{0}}:=\left(\mathfrak{\mathfrak { A }}, a_{0}\right)$. Let $\alpha \in \operatorname{Aut}(\Gamma)$. The following conditions are equivalent:
(a) $\alpha \in \operatorname{Aut}(\Gamma)_{l}: l(\alpha(g))=l(g)$ for all $g \in \Gamma$.
(b) $\exists \Phi=(\phi,(\gamma)) \in \operatorname{Aut}(\mathscr{H})$, and $h=|\omega|$, where ω is an edge path in A from a_{0} to $\phi\left(a_{0}\right)$, such that $\alpha=\operatorname{ad}(h) \circ \Phi_{a_{0}}$.

Proof. $(\mathrm{b}) \Rightarrow(\mathrm{a})$: This follows as in 3.6. Putting $\Gamma_{a}=\pi_{1}(\mathfrak{H}, a)$ and $X_{a}=(\overline{\mathfrak{Y}}, a)$, with length function l_{a}, we have isomorphisms of group actions

$$
\left(\Gamma_{a}, X_{a}\right) \xrightarrow{\left(\Phi_{a}, \tilde{\Phi}_{a}\right)}\left(\Gamma_{\phi(a)}, X_{\phi(a)}\right) \xrightarrow{(\operatorname{ad}(h), h \cdot)}\left(\Gamma_{a}, X_{a}\right)
$$

(cf. 3.3 and $2.3(3)$). It follows then from Lemma 1.3 that $\operatorname{ad}(h) \circ \Phi_{a}$ preserves l_{a}.
$(\mathrm{a}) \Rightarrow(\mathrm{b})$: Suppose that $l \circ \alpha=l \quad\left(l=l_{a_{0}}\right)$. Since X is a minimal non-abelian Γ-tree, it follows from Theorem 1.10 that there is a unique $\lambda \in \operatorname{Aut}(X)$ which is α-equivariant, i.e.

$$
(\alpha, \lambda):(\Gamma, X) \rightarrow\left(\Gamma, X_{\alpha}\right)
$$

is an isomorphism of tree actions, where X_{α} denotes X with the given Γ-action composed with α. Now it follows from 2.5 that we can choose fundamental domain data so as to identify

$$
\Gamma \backslash X_{\alpha}=\mathfrak{Q}=\Gamma \backslash X .
$$

Moreover the projection $\psi: \pi(\mathfrak{W}) \rightarrow \Gamma$ is the same for both interpretations of \mathfrak{A}.

Then (cf. $3.9(1)$) the isomorphism (α, λ) permits us to construct $\Phi=(\phi,(\gamma)) \in$ $\operatorname{Aut}(\mathcal{H})$ such that we have a commutative diagram of isomorphisms

Fix a spanning tree $T \subset A$ so that ψ factors through an isomorphism $\pi_{1}(\mathfrak{A}, T) \rightarrow \Gamma$, which we view as an identification. For $a, b \in V A$ let $g_{a, b} \in \pi[a, b]$ come from the edge-path in T from a to b. Let $\sigma_{a}: \Gamma \rightarrow \Gamma_{a}$ denote the inverse of the isomorphism $\psi_{a}: \Gamma_{a} \rightarrow \Gamma$. Then the diagram above plus $2.2(13)$ furnish a commutative diagram

Thus, using $\sigma_{a_{0}}$ to identify Γ with $\Gamma_{a_{0}}, \alpha$ is converted to $\operatorname{ad}\left(g_{a_{0}, \phi\left(a_{0}\right)}\right) \circ \Phi_{a_{0}}$, whence the theorem.
4.2. Corollary. Let $\Gamma, X, l=l_{X}$, and $\mathfrak{A}=\Gamma \prod X$ be as in Theorem 4.1. Choose a base point $a_{0} \in V A$ and identify (Γ, X) with $\left(\Gamma_{a_{0}}, X_{a_{0}}\right)$. Then we have an exact sequence

$$
\begin{equation*}
1 \rightarrow \operatorname{In} \operatorname{Aut}(\mathfrak{H}) \rightarrow \operatorname{Aut}(\mathfrak{H}) \xrightarrow{\sigma_{u_{0}}} \operatorname{Out}(\Gamma)_{l} \rightarrow 1 \tag{1}
\end{equation*}
$$

where $\sigma_{a_{0}}$ is as in 3.8(15).
Proof. The only non-trivial point is the surjectivity of $\sigma_{a_{0}}$, and this is given by Theorem 4.1, (a) \Rightarrow (b).

The sequence (1) permits us to use the study of $\operatorname{Aut}(\mathfrak{P})$, which we carry out in Sections 6 and 7, to obtain information about $\operatorname{Out}(\Gamma)_{l}$, described in Theorem 8.1.

In the next section, we apply Theorem 4.1 to the special case when $A=\Gamma \backslash X$ is an edge (amalgam) or a loop (HNN-extension).

5. Amalgams and HNN-extensions

5.1. Amalgams. Let $A=a \circ \stackrel{e}{\longrightarrow} \circ b$, and view α_{e} and $\alpha_{\bar{e}}$ as inclusions of a proper subgroup,

$$
\begin{equation*}
\mathscr{A}_{a} \nsupseteq \mathscr{A}_{e} \nsupseteq \mathscr{A}_{b} . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Gamma=\pi_{1}(\mathfrak{A}, A)=\mathscr{A}_{a} * \mathscr{S}_{e} \mathscr{A}_{b} \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
\Gamma_{a}=\pi_{1}(\mathfrak{A}, a)=\mathscr{A}_{a} *_{\mathscr{d}_{e}} e \mathscr{A}_{b} e^{-1} \leq \pi(\mathfrak{H}) \tag{3}
\end{equation*}
$$

The map $\pi(\mathfrak{H}) \rightarrow \Gamma$ killing $e \in \pi(\mathfrak{U})$ induces an isomorphism $\Gamma_{a} \xrightarrow{\cong} \Gamma$. For $\gamma \in$ $\operatorname{Aut}(\Gamma)$, let γ_{a} denote the corresponding automorphism of Γ_{a}.

Following Martindale and Montgomery [6] we call $\gamma \in \operatorname{Aut}(\Gamma)$ an induced automorphism if $\gamma\left(\mathscr{A}_{c}\right)=\mathscr{A}_{c}(c=a, b)$, and an exchange automorphism if $\gamma\left(\mathscr{A}_{a}\right)=\mathscr{A}_{b}$ and $\gamma\left(\mathscr{A}_{b}\right)=\mathscr{A}_{a}$. Note that

$$
\begin{equation*}
\operatorname{Aut}(A)=\{I, \sigma\}, \quad \sigma(e)=\bar{e} \tag{4}
\end{equation*}
$$

Let l denote the length function of the Γ-action on $X_{a}=(\widetilde{\mathfrak{A}, a})$.
5.2. Theorem. Let $\gamma \in \operatorname{Aut}(\Gamma)$. Then $l \circ \gamma=l$ iff $\gamma=\operatorname{ad}(h) \circ \beta$, with $h \in \Gamma$ and β is either an induced or an exchange automorphism.

Proof. We know from Theorem 4.1 that $l \circ \gamma=l$ iff $\gamma_{a}=\operatorname{ad}(g) \circ \Phi_{a}$, where $\Phi=$ $(\phi,(\delta)) \in \delta \operatorname{Aut}(\mathscr{H})$, and $g \in \pi\left[a, \phi_{A}(a)\right]$. Write

$$
\Phi=\left(\phi_{A},\left\{\phi_{a}, \phi_{b}\right\},\left\{\phi_{e}\right\},\left\{\delta_{e}, \delta_{\bar{e}}\right\}\right)
$$

Then we can factor

$$
\Phi=\Phi^{\prime} \circ \Phi^{\prime \prime}
$$

where

$$
\begin{aligned}
\Phi^{\prime} & =\left(\operatorname{Id}_{A},\left\{\operatorname{ad}\left(\delta_{e}\right), \operatorname{ad}\left(\delta_{\bar{e}}\right)\right\},\left\{\operatorname{Id}_{\delta_{e}}\right\},\left\{\delta_{e}, \delta_{\bar{e}}\right\}\right), \\
\Phi^{\prime \prime} & =\left(\phi_{A},\left\{\phi_{a}^{\prime \prime}, \phi_{b}^{\prime \prime}\right\},\left\{\phi_{e}\right\},\{1,1\}\right) \\
\phi_{a}^{\prime \prime} & =\operatorname{ad}\left(\delta_{e}^{-1}\right) \circ \phi_{a}, \quad \phi_{b}^{\prime \prime}=\operatorname{ad}\left(\delta_{\bar{e}}^{-1}\right) \circ \phi_{b}
\end{aligned}
$$

An easy calculation verifies the above, as well as the fact that

$$
\Phi_{a}^{\prime}=\operatorname{ad}\left(\delta_{e}\right): \Gamma_{a} \rightarrow \Gamma_{a}
$$

Thus, replacing g by $g \delta_{e}$, and Φ by $\Phi^{\prime \prime}$, we reduce to the case when $\delta_{e}=1=\delta_{\bar{e}}$, which we now assume. It follows that, for $\Phi: \pi(\mathfrak{U l}) \rightarrow \pi(\mathfrak{H}), \quad \Phi(e)=\delta_{e} e \delta_{\bar{e}}^{-1}=e$. Thus

$$
\Phi_{a}\left(\mathscr{A}_{a}\right)=\phi_{a}\left(\mathscr{A}_{a}\right)=\mathscr{A}_{\phi_{A}(a)},
$$

and

$$
\Phi_{a}\left(e \mathscr{A}_{b} e^{-1}\right)=e \phi_{b}\left(\mathscr{A}_{b}\right) e^{-1}=e \mathscr{A}_{\phi_{A}(b)} e^{-1} .
$$

When $\phi_{A}=\operatorname{Id}_{A}, \Phi_{a}$ is induced. When $\phi_{A}=\sigma, g \in \pi[a, b]$, so $\gamma_{a}=\operatorname{ad}\left(g e^{-1}\right) \circ \operatorname{ad}(e) \circ$ Φ_{a}, with $g e^{-1} \in \Gamma_{a}$, and $\psi_{a}:=\operatorname{ad}(e) \circ \Phi_{a}$ satisfies $\psi_{a}\left(\mathscr{A}_{a}\right)=e \phi_{a}\left(\mathscr{A}_{a}\right) e^{-1}=e \mathscr{A}_{b} e^{-1}$, while $\psi_{a}\left(e \mathscr{A}_{b} e^{-1}\right)=e\left(\sigma(e) \phi_{b}\left(\mathscr{A}_{b}\right) \sigma(e)^{-1}\right) e^{-1}=e \bar{e} \mathscr{A}_{a} \bar{e}^{-1} e^{-1}=\mathscr{A}_{a}$. Thus ψ is an exchange automorphism.
To complete the proof it suffices to show conversely, that, if $\psi \in \operatorname{Aut}(\Gamma)$ is either induced or exchange, then $\psi_{a}=\operatorname{ad}(h) \circ \Phi_{a}$ for some $\Phi \in \delta \operatorname{Aut}(\mathfrak{H})$ and $h \in \pi\left[a, \phi_{A}(a)\right]$. Define $\phi_{A}=\operatorname{Id}_{A}$ if ψ is induced, and $\phi_{A}=\sigma$ if ψ is exchange. Let $\psi_{c}=\left.\psi\right|_{\boldsymbol{\alpha}_{c}}$: $\mathscr{A}_{c} \rightarrow \mathscr{A}_{\phi_{A}(c)}$ for $c=a, b$. Since, in $\Gamma, \mathscr{A}_{e}=\mathscr{A}_{a} \cap \mathscr{A}_{b}=\psi \mathscr{A}_{a} \cap \psi \mathscr{A}_{b}, \psi$ induces an automorphism ψ_{e} of \mathscr{A}_{e}. Thus we have

$$
\Phi=\left(\phi_{A},\left\{\psi_{a}, \psi_{b}\right\},\left\{\psi_{e}\right\},\{1,1\}\right) \in \delta \operatorname{Aut}(\mathfrak{H}) .
$$

It is easily calculated that $\psi_{a}=\Phi_{a}$ if ψ is induced, and $\psi_{a}=\operatorname{ad}(e) \circ \Phi_{a}$ if ψ is exchange.
5.3. The stabilizer of l, $\operatorname{Aut}(\Gamma)_{l}$. For $c=a, b$, let $\operatorname{Aut}^{E}\left(\mathscr{A}_{c}\right)$ denote the stabilizer of \mathscr{A}_{e} in $\operatorname{Aut}\left(\mathscr{A}_{c}\right)$. Then the restriction homomorphisms $\operatorname{Aut}^{E}\left(\mathscr{A}_{c}\right) \rightarrow \operatorname{Aut}\left(\mathscr{A}_{e}\right)$ allow us to define

$$
\begin{aligned}
\mathrm{IA} & =\operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right) \times \operatorname{Aut}\left(\mathscr{A}_{e}\right) \operatorname{Aut}^{E}\left(\mathscr{A}_{b}\right) \\
& =\left\{\left(\phi_{a}, \phi_{b}\right) \in \operatorname{Aut}\left(\mathscr{A}_{a}\right) \times \operatorname{Aut}\left(\mathscr{A}_{b}\right)\left|\phi_{a}\right| \mathscr{A}_{c}=\phi_{b} \mid \mathscr{A}_{e}\right\} .
\end{aligned}
$$

Clearly we can identify IA with the group of induced automorphisms of Γ. If there is an exchange automorphism γ, then γ^{2} is induced, and $\langle\mathrm{IA}, \gamma\rangle$ is the group of induced and exchange automorphisms.

Put

$$
\begin{aligned}
N & =\left\{\left(\operatorname{ad}\left(g^{-1}\right),(\operatorname{ad}(g), \operatorname{ad}(g)) \mid g \in \mathscr{A}_{e}\right\}\right. \\
& \leq \operatorname{ad}(\Gamma) \gg \mathrm{IA} .
\end{aligned}
$$

5.4. Theorem. If there is an exchange automorphism γ then

$$
\operatorname{Aut}(\Gamma)_{l} \cong(\operatorname{ad}(\Gamma) \rtimes\langle\mathrm{IA}, \gamma\rangle) / N
$$

otherwise

$$
\operatorname{Aut}(\Gamma)_{l} \cong(\operatorname{ad}(\Gamma) \gg \mathrm{IA}) / N
$$

Proof. See Lemma 5.2 of [5].

5.5. HNN-extensions. Let

$$
\begin{equation*}
\mathscr{A}_{e} \underset{\alpha_{\bar{e}}}{\stackrel{\alpha_{e}}{\longrightarrow}} \mathscr{A}_{a} \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Gamma=\pi_{1}(\mathfrak{A}, a)=\left\langle\mathscr{A}_{a}, e \mid e \alpha_{\bar{e}}(s) e^{-1}=\alpha_{e}(s) \forall s \in \mathscr{A}_{e}\right\rangle \tag{2}
\end{equation*}
$$

is the HNN-extension associated with (1). Note that,

$$
\begin{equation*}
\operatorname{Aut}(A)=\{\mathrm{I}, \sigma\}, \quad \sigma(e)=\bar{e} \tag{3}
\end{equation*}
$$

Let l denote the length function of the Γ-action on $(\widetilde{\mathfrak{A}, a})$.
5.6. Theorem. Let $\gamma \in \operatorname{Aut}(\Gamma)$. Then $l \circ \gamma=l$ iff $\gamma=\operatorname{ad}(g) \circ \psi$ with $g \in \Gamma$ and ψ of one of the following forms:
(1) $\psi\left(\mathscr{A}_{a}\right)=\mathscr{A}_{a}, \psi\left(\alpha_{\bar{e}} \mathscr{A}_{e}\right)=\alpha_{\bar{e}} \mathscr{A}_{e}, \psi(e)=\delta_{e} e, \delta_{e} \in \mathscr{A}_{a}$, and $\operatorname{ad}\left(\delta_{e} e\right) \circ \psi \circ \alpha_{e}=$ $\psi \circ \alpha_{\bar{e}}$.
(2) $\psi\left(\mathscr{A}_{a}\right)=\mathscr{A}_{a}, \psi\left(\alpha_{\bar{e}} \mathscr{A}_{e}\right)=\alpha_{e} \mathscr{A}_{e}, \psi(e)=\delta_{e} e^{-1}, \delta_{e} \in \mathscr{A}_{a}$, and $\operatorname{ad}\left(\delta_{e} e^{-1}\right) \circ \psi \circ \alpha_{\bar{e}}=$ $\psi \circ \alpha_{e}$.

Proof. From Theorem 4.1 we know that $l \circ \gamma=l$ iff $\gamma=\operatorname{ad}(g) \circ \Phi_{a}$ for some $\Phi \in$ $\delta \operatorname{Aut}(\mathfrak{H})$ and $g \in \Gamma$. Writing

$$
\Phi=\left(\phi_{A},\left\{\phi_{a}\right\},\left\{\phi_{e}\right\},\left\{\delta_{e}, \delta_{\bar{e}}\right\}\right)
$$

we can factor

$$
\Phi=\Phi^{\prime} \circ \Phi^{\prime \prime}
$$

where

$$
\begin{aligned}
\Phi^{\prime} & =\left(\operatorname{Id}_{A},\left\{\operatorname{ad}\left(\delta_{\bar{e}}\right)\right\},\left\{\operatorname{Id}_{\mathscr{A}_{e}}\right\},\left\{\delta_{\bar{e}}, \delta_{\bar{e}}\right\}\right), \\
\Phi^{\prime \prime} & =\left(\phi_{A},\left\{\operatorname{ad}\left(\delta_{\bar{e}}^{-1}\right) \circ \phi_{a}\right\},\left\{\phi_{e}\right\},\left\{\delta_{\bar{e}}^{-1} \delta_{e}, 1\right\}\right)
\end{aligned}
$$

An easy calculation shows that $\Phi_{a}^{\prime}=\operatorname{ad}\left(\delta_{\bar{e}}\right): \Gamma \rightarrow \Gamma$. Thus, replacing g by $g \delta_{\bar{e}}$ and Φ by $\Phi^{\prime \prime}$, we can reduce to the case $\delta_{\bar{e}}=1$, which we now assume. Then we have
commutative diagrams

From the diagram (1)($\bar{e})$ we see that

$$
\begin{equation*}
\phi_{a}\left(\alpha_{\bar{e}} \mathscr{A}_{e}\right)=\alpha_{\phi_{1}(\bar{e})} \mathscr{A}_{e} \tag{2}
\end{equation*}
$$

Further

$$
\begin{equation*}
\operatorname{ad}\left(\delta_{e}^{-1}\right) \circ \phi_{a} \circ \alpha_{e}=\alpha_{\phi_{A}(e)} \circ \phi_{e} \quad \text { and } \quad \phi_{a} \circ \alpha_{\bar{e}}=\alpha_{\phi_{A}(\bar{e})} \circ \phi_{e} \tag{3}
\end{equation*}
$$

Let $\psi=\Phi_{a}: \Gamma \rightarrow \Gamma$. Then

$$
\begin{align*}
& \left.\psi\right|_{\mathscr{A}_{a}}=\phi_{a}: \mathscr{A}_{a} \rightarrow \mathscr{A}_{a}, \\
& \psi\left(\alpha_{\bar{e}} \mathscr{A}_{e}\right)=\alpha_{\phi_{A}(\bar{e})} \mathscr{A}_{e}, \tag{4}\\
& \psi(e)=\delta_{e} \phi_{A}(e) .
\end{align*}
$$

Case $\phi_{A}=\operatorname{Id}_{A}$. Then $\psi\left(\alpha_{\bar{e}} \mathscr{A}_{e}\right)=\alpha_{\bar{e}} \mathscr{A}_{e}, \psi(e)=\delta_{e} e$, and (cf. (3)) $\operatorname{ad}\left(\delta_{e}^{-1}\right) \phi_{a} \alpha_{e}=$ $\alpha_{e} \phi_{e}=\operatorname{ad}(e) \alpha_{\bar{e}} \phi_{e}=\operatorname{ad}(e) \phi_{a} \alpha_{\bar{e}}$, so

$$
\begin{equation*}
\operatorname{ad}\left(\delta_{e} e\right) \phi_{a} \alpha_{e}=\phi_{a} \alpha_{\bar{e}} \tag{5}
\end{equation*}
$$

Case $\phi_{A}=\sigma$. Then $\psi\left(\alpha_{\bar{e}} \mathscr{A}_{e}\right)=\alpha_{e} \mathscr{A}_{e}, \psi(e)=\delta_{e} e^{-1}$, and (cf. (3)) $\operatorname{ad}\left(\delta_{e}^{-1}\right) \phi_{a} \alpha_{e}=$ $\alpha_{\bar{e}} \phi_{e}=\operatorname{ad}\left(e^{-1}\right) \alpha_{e} \phi_{e}=\operatorname{ad}\left(e^{-1}\right) \phi_{a} \alpha_{\bar{e}}$, so

$$
\begin{equation*}
\operatorname{ad}\left(\delta_{e} e^{-1}\right) \phi_{a} \alpha_{\bar{e}}=\phi_{a} \alpha_{e} \tag{6}
\end{equation*}
$$

Conversely, let $\psi \in \operatorname{Aut}(\Gamma)$ satisfy (1) or (2). Then we can define $\phi_{a} \in \operatorname{Aut}\left(\mathscr{A}_{a}\right)$ and $\phi_{e}=\phi_{\bar{e}} \in \operatorname{Aut}\left(\mathscr{A}_{e}\right)$ by $\phi_{a}=\left.\psi\right|_{\mathscr{A}_{a}}$, and $\phi_{a} \circ \alpha_{\bar{e}}=\alpha_{\phi_{A}(\bar{e})} \circ \phi_{e}$, where $\phi_{A}=\operatorname{Id}_{A}$ in case (1), and σ in case (2). The latter gives the commutative diagram (1)($\bar{e})$. The commutativity of (1)(e) follows from the hypothesis (5) in case (1), and (6) in case (2). Thus we have $\psi=\Phi_{a}$, where

$$
\Phi=\left(\phi_{A},\left\{\phi_{a}\right\},\left\{\phi_{e}\right\},\left\{\delta_{e}, 1\right\}\right) .
$$

Let F_{n} be a free group of rank n. Suppose that F_{n} acts freely (without inversions) and minimally on a tree X with a hyperbolic length function l.
5.7. Proposition. Let $A=F_{n} \backslash X$. Let $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. Then $l \circ \varphi=l$ iff there is an isomorphism $\phi: A \rightarrow A$, and an edge path γ from a_{0} to $\phi\left(a_{0}\right)$ such that

$$
\varphi\left(e_{1} e_{2} \cdots e_{n}\right)=\gamma \phi\left(e_{1}\right) \cdots \phi\left(e_{n}\right) \gamma^{-1}
$$

for all edge loop $e_{1} e_{2} \cdots e_{n} \in \pi_{1}\left(A, a_{0}\right)$.

In particular if A consists of one vertex and n geometric edges $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ (A is a "rose"), then $l \circ \varphi=l$ iff there is a $\gamma \in F_{n}$ and a permutation $\sigma \in S_{n}$ such that $\varphi\left(e_{i}\right)=\gamma e_{\sigma(i)}^{ \pm 1} \gamma^{-1}(1 \leq i \leq n)$.

Proof. The proof is left to the reader.
5.8. Bounded automorphisms. Let $\Gamma=\pi_{1}(\mathfrak{A l}, a)$ act on $X=(\widetilde{\mathfrak{A}, a})$ with hyperbolic length function l. Let $x_{0}=[1]_{a} \in X$. Then for $L=L_{\mathscr{A}}$ the path length function on Γ defined as in 2.2(5), it follows from 2.3(1) that

$$
\begin{equation*}
L(g)=d_{X}\left(g x_{0}, x_{0}\right) \quad \forall g \in \Gamma \tag{1}
\end{equation*}
$$

It then follows further from [1], that

$$
\begin{equation*}
l(g)=\operatorname{Max}\left(L\left(g^{2}\right)-L(g), 0\right) \quad \forall g \in \Gamma \tag{2}
\end{equation*}
$$

Let $H \subset \Gamma$ be a subset stable under squaring. It follows then from (2) that if $L(H)$ is bounded then $l(H)$ is bounded. If H is a subgroup then $l(H)$ can be bounded only if $l(H)=\{0\}$; indeed $l\left(g^{n}\right)=|n| l(g)$ for $g \in \Gamma$ and $n \in \mathbf{Z}$.

If, conversely, $l(H)=0$ for $H \leq \Gamma$, then either (i) H fixes some $x \in V X$, or (ii) H fixes an end ε of X, but no vertex (cf. [2, (7.2)]). In case (i), H is contained in a conjugate of some \mathscr{A}_{b}, and so $L(H)$ is bounded. However, in case (ii), $L(H)$ will not be bounded.

Call a subgroup $H \leq \Gamma$ bounded if $L(H)$ is bounded. Call an automorphism $\alpha \in$ Aut (Γ) bounded if $\alpha(H)$ is bounded for all bounded $H \leq \Gamma$. If α is bounded then it follows from the discussion above that, for all $x \in X, \alpha\left(\Gamma_{x}\right) \leq \Gamma_{y}$ for some $y \in X$. In fact, if α and α^{-1} are bounded, then α permutes the maximal bounded subgroups ($=$ maximal vertex stabilizers) of Γ, and so, if Γ_{x} is a maximal vertex stabilizer, then $\alpha\left(\Gamma_{x}\right)=\Gamma_{y}$ for some $y \in X$.
5.9. Corollary. Let $\alpha \in \operatorname{Aut}(\Gamma)$. If $l \circ \alpha=l$ then α and α^{-1} are bounded.

Proof. Since $l \circ \alpha^{-1}=l$ it suffices to treat α. By Theorem 4.1, $\alpha=\Phi_{(a)}=\operatorname{ad}(\gamma) \circ \delta \Phi_{a}$ for some $\gamma \in \pi(\mathfrak{U l})$ and $\delta \Phi \in \delta \operatorname{Aut}(\mathfrak{U})$. By Lemma $3.5, \delta \Phi_{a}$ preserves L, and clearly $\operatorname{ad}(\gamma)$ increases L by at most an additive constant ($2 \cdot L(\gamma)$).

6. The structure of $\operatorname{Aut}(\mathfrak{H})$ and $\operatorname{In} \operatorname{Aut}(\mathfrak{H})$

6.0. Composition and the center $\mathbf{Z}(\mathfrak{U})$. In this section we fix a graph of groups $\mathfrak{A}=$ (A, \mathscr{A}), and put

$$
\begin{equation*}
\mathbf{G}=\operatorname{Aut}(\mathfrak{H}) \tag{1}
\end{equation*}
$$

For $a \in V A$ we write $\Gamma_{a}=\pi_{1}(\mathfrak{A}, a)$ and $X_{a}=(\widetilde{\mathfrak{A}, a})$.

For reference, we recall the composition

$$
\begin{equation*}
\Phi^{\prime \prime}=\left(\left(\phi^{\prime \prime},\left(\gamma^{\prime \prime}\right)\right)=\Phi^{\prime} \circ \Phi\right. \tag{2}
\end{equation*}
$$

of $\Phi=(\phi,(\gamma))$ with $\Phi^{\prime}=\left(\phi^{\prime},\left(\gamma^{\prime}\right)\right)(\mathrm{cf}.(3.6)$, and $[2,(2.11)])$.

$$
\begin{equation*}
\phi_{A}^{\prime \prime}=\phi_{A}^{\prime} \circ \phi_{A} . \tag{3}
\end{equation*}
$$

For $e \in E A, \partial_{0}=a \in V A$,

$$
\begin{array}{lr}
\phi_{a}^{\prime \prime}=\phi_{\phi(a)}^{\prime} \circ \phi_{a}, \quad \phi_{e}^{\prime \prime}=\phi_{\phi(e)}^{\prime} \circ \phi_{e}, \\
\gamma_{a}^{\prime \prime}=\Phi_{\phi(a)}^{\prime}\left(\gamma_{a}\right) \gamma_{\phi(a)}^{\prime}, \quad \gamma_{e}^{\prime \prime}=\Phi_{\phi(a)}^{\prime}\left(\gamma_{e}\right) \gamma_{\phi(e)}^{\prime} . \tag{5}
\end{array}
$$

With $\delta_{e}=\gamma_{a}^{-1} \gamma_{e}, \delta_{e}^{\prime}=\gamma_{a}^{\prime-1} \gamma_{e}^{\prime}$, and $\delta_{e}^{\prime \prime}=\gamma_{a}^{\prime \prime-1} \gamma_{e}^{\prime \prime}$, this gives

$$
\begin{equation*}
\delta_{e}^{\prime \prime}=\phi_{\phi(a)}^{\prime}\left(\delta_{e}\right) \delta_{\phi(e)}^{\prime} . \tag{6}
\end{equation*}
$$

In some places we shall make use of the following hypothesis.
(MNA) The Γ_{a}-tree X_{a} is minimal non-abelian.
This condition is independent of a, so we can say similarly,
(MNA) " \mathfrak{A} is minimal non-abelian."
In this case it follows from Proposition 1.5 that the center

$$
\begin{equation*}
Z_{a}(\mathfrak{U})=Z\left(\Gamma_{a}\right) \tag{7}
\end{equation*}
$$

acts trivially on X_{a}, and so $Z_{a}(\mathfrak{H}) \leq \mathscr{A}_{a}$, in fact

$$
\begin{equation*}
Z_{a}(\mathfrak{H}) \leq \alpha_{e}\left(\mathscr{A}_{e}\right) \quad \forall e \in E_{0}(a) . \tag{8}
\end{equation*}
$$

Let $z_{a} \in Z_{a}(\mathfrak{H})$. For $b \in V A$ define $z_{b}=g z_{a} g^{-1}$, where $g \in \pi[b, a]$. Since $\pi[b, a]=$ $g \Gamma_{a}$, this definition is independent of the choice of g. Moreover if $h \in \pi[c, b]$ then $h z_{b} h^{-1}=h_{c}$. Putting

$$
\begin{equation*}
z=\left(z_{b}\right)_{b \in V A} \tag{9}
\end{equation*}
$$

we see that such elements z form a group

$$
Z(\mathfrak{H})
$$

such that

$$
\begin{equation*}
Z(\mathfrak{H}) \xrightarrow{\cong} Z_{b}(\mathfrak{A}), \quad z \mapsto z_{b}, \tag{10}
\end{equation*}
$$

is an isomorphism for all $b \in V A$. We call $Z(\mathfrak{U})$ the "center of \mathfrak{A} ".

Let $a \in V A$ and $e \in E_{0}(a)$. It follows from (8) that we can define $Z_{e}(\mathfrak{H}) \leq \mathscr{A}_{e}$ by

$$
\begin{equation*}
Z_{a}(\mathfrak{U})=\alpha_{e} Z_{e}(\mathfrak{H}) . \tag{11}
\end{equation*}
$$

For $z \in Z(\mathfrak{U})$ we have

$$
\begin{equation*}
z_{a}=\alpha_{e}\left(z_{e}\right) \quad \text { for a unique } z_{e} \in Z_{e}(\mathfrak{A}) . \tag{12}
\end{equation*}
$$

If $\hat{o}_{1} e=b$ then

$$
\alpha_{e}\left(z_{\bar{e}}\right)=e \alpha_{\bar{e}}\left(z_{\bar{e}}\right) e^{-1}=e z_{b} e^{-1}=z_{a}=\alpha_{e}\left(z_{e}\right),
$$

whence

$$
\begin{equation*}
z_{\bar{e}}=z_{e} . \tag{13}
\end{equation*}
$$

6.1. The group $\mathbf{G}^{A}=\operatorname{Ker}\left(q_{A}\right)$, in the exact sequence from 3.7,

$$
\begin{equation*}
1 \rightarrow \mathbf{G}^{A} \rightarrow \mathbf{G} \xrightarrow{q_{A}} \operatorname{Aut}(A), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{A}(\Phi)=\phi_{A}, \quad \mathbf{G}^{A}=\left\{\Phi \mid \phi_{A}=\mathrm{Id}_{A}\right\} . \tag{2}
\end{equation*}
$$

We then further have the homomorphism

$$
\begin{aligned}
& \mathbf{G}^{A} \xrightarrow{q} \prod_{a \in V_{A}} \operatorname{Aut}\left(\mathscr{A}_{a}\right) \times \prod_{e \in E A} \operatorname{Aut}\left(\mathscr{A}_{e}\right), \\
& q(\Phi)=\left(\left(\phi_{a}\right)_{a \in V_{A}},\left(\phi_{e}\right)_{e \in E A}\right) .
\end{aligned}
$$

This permits us to define normal subgroups

$$
\begin{equation*}
\mathbf{G}^{(V, E)} \triangleleft \mathbf{G}^{(V)} \triangleleft \mathbf{G}^{A} \tag{3}
\end{equation*}
$$

where, for $\Phi=(\phi,(\gamma)) \in \mathbf{G}^{A}$

$$
\begin{equation*}
\Phi \in \mathbf{G}^{(\mathrm{V})} \text { iff } \phi_{a} \in \operatorname{ad}\left(\mathscr{A}_{a}\right) \forall a \in V A, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi \in \mathbf{G}^{(V, E)} \text { iff } \phi_{u} \in \operatorname{ad}\left(\mathscr{A}_{u}\right) \forall u \in V A \cup E A . \tag{5}
\end{equation*}
$$

6.2. The group $\operatorname{In} \mathbf{G}:=\operatorname{In} \operatorname{Aut}(\mathfrak{H})$. Recall from 3.8(16) that this is the kernel of σ_{a} in the commutative diagram

where $\sigma_{a}^{\prime}(\Phi)=\Phi_{(a)}$, as in 3.8(3). Thus

$$
\begin{equation*}
\operatorname{In} \mathbf{G}=\left\{\Phi \mid \Phi_{(a)} \in \operatorname{ad}\left(\Gamma_{a}\right)=\operatorname{In} \operatorname{Aut}\left(\Gamma_{a}\right)\right\} \tag{1}
\end{equation*}
$$

and this definition is independent of $a \in V A$.
We now make the assumption
(MNA) \mathfrak{A} is minimal non-abelian.
It follows then from 3.8(18) that

$$
\begin{equation*}
\operatorname{In} \mathbf{G} \leq \mathbf{G}^{A} \tag{2}
\end{equation*}
$$

and from Corollary 4.2 that we have an exact sequence

$$
\begin{equation*}
1 \rightarrow \operatorname{In} \mathbf{G} \rightarrow \mathbf{G} \xrightarrow{\sigma_{a}} \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}} \rightarrow 1 \tag{3}
\end{equation*}
$$

To analyze $\operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}$ we shall introduce a chain of normal subgroups between \mathbf{G} and In \mathbf{G}.
6.3. The homomorphism $\delta: \mathbf{G} \rightarrow \mathbf{G}$ is defined on $\Phi=(\phi,(\gamma))$, as in 3.4 , by $\delta \Phi=$ ($\phi,(\delta)$), where ϕ is left unaltered, γ_{a} is replaced by $\delta_{a}=1$, and γ_{e} is replaced by $\delta_{e}=\gamma_{a}^{-1} \gamma_{e}$. We have 3.4(1),

$$
\begin{equation*}
\Phi_{a}=\operatorname{ad}\left(\gamma_{a}\right) \circ(\delta \Phi)_{a}: \Gamma_{a} \rightarrow \Gamma_{\phi(a)} . \tag{1}
\end{equation*}
$$

From 3.6(6) we know that δ is a homomorphism,

$$
\begin{equation*}
\delta\left(\Phi^{\prime} \circ \Phi\right)=\delta \Phi^{\prime} \circ \delta \Phi \tag{2}
\end{equation*}
$$

Further (cf. $3.4(2)$) δ is clearly idempotent,

$$
\begin{equation*}
\delta^{2}=\delta \tag{3}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \mathbf{G}=\gamma \mathbf{G} \gg \delta \mathbf{G}, \quad \text { where } \\
& \gamma \mathbf{G}=\operatorname{Ker}(\delta) . \tag{4}
\end{align*}
$$

It is easily seen that we have an isomorphism

$$
\begin{equation*}
\prod_{a \in V A} \Gamma_{a} \xrightarrow{\cong} \gamma \mathbf{G} \tag{5}
\end{equation*}
$$

sending $g=\left(g_{a}\right)_{a \in \mathrm{VA}}$ to $\Phi_{g}=(I,(\gamma))$, defined by $I_{A}=\mathrm{Id}_{A}, I_{u}=\mathrm{Id}_{\mathscr{A}_{u}}$ for $u \in V A \cup E A$, and, for $a \in V A, e \in E_{0}(a), \gamma_{a}=g_{a}=\gamma_{e}\left(\right.$ whence $\left.\delta_{e}=1\right)$. Since $\left(\Phi_{g}\right)_{a}=\operatorname{ad}\left(g_{a}\right)$, clearly, we have

$$
\begin{equation*}
\gamma \mathbf{G} \leq \operatorname{In} \mathbf{G} . \tag{6}
\end{equation*}
$$

It follows that,

$$
\begin{equation*}
\text { If } \text { In } \mathbf{G} \leq H \leq \mathbf{G}, \quad \text { then } H=\gamma \mathbf{G} \rtimes \delta H, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{a} H=\sigma_{a} \delta H, \quad \text { where } \sigma_{a}: \mathbf{G} \rightarrow \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}} . \tag{8}
\end{equation*}
$$

6.4. Theorem. Continue to assume $(M N A): \mathfrak{A}$ is minimal non-abelian. Let $\Phi=$ $(\phi,(\delta)) \in \delta \mathbf{G}$. Then $\Phi \in \operatorname{In} \mathbf{G}$ iff the following conditions hold:
(a) $\phi_{A}=\mathrm{Id}_{A}$, i.e. $\Phi \in \delta \mathbf{G}^{A}$.
(b) There exist elements $h_{a} \in \mathscr{A}_{a} \quad(a \in V A)$ and $s_{e} \in \mathscr{A}_{e} \quad(e \in E A)$ such that,

$$
\phi_{a}=\operatorname{ad}\left(h_{a}\right), \quad \phi_{e}=\operatorname{ad}\left(s_{e}\right) \quad \text { and } \quad \delta_{e}=h_{a} \alpha_{e}\left(s_{e}\right)^{-1} \quad \text { if } \partial_{0} e=a .
$$

(c) For all $e \in E A$, the element $z_{e}(e):=s_{e}^{-1} s_{\bar{e}}$ belongs to $Z_{e}(\mathfrak{A l})$ (cf. 6.1). This defines an element $z(e) \in Z(\mathfrak{H})$.
(d) For each closed path $\left(e_{1}, \ldots, e_{n}\right)$ in A,

$$
z\left(e_{1}\right) \cdots z\left(e_{n}\right)=1
$$

Under these conditions, $\Phi_{a}=\operatorname{ad}\left(h_{a}\right): \Gamma_{a} \rightarrow \Gamma_{a}$.
Proof. First assume that $\Phi \in \delta \operatorname{In} \mathbf{G}$. Then (a) follows from 6.2(2). By assumption, for each $a \in V A$, there is an $h_{a} \in \Gamma_{a}$ such that $\Phi_{a}\left(=\Phi_{(a)}\right)=\operatorname{ad}\left(h_{a}\right)$.

$$
\begin{equation*}
\Phi_{a}\left(=\Phi_{(a)}\right)=\operatorname{ad}\left(h_{a}\right): \Gamma_{a} \rightarrow \Gamma_{a} . \tag{1}
\end{equation*}
$$

Let $g \in \Gamma_{a}, e \in E_{0}(a)$, and $b=\hat{o}_{1} e$. Then $e^{-1} g e \in \Gamma_{b}$, so

$$
\begin{aligned}
h_{b}\left(e^{-1} g e\right) h_{b}^{-1} & =\Phi_{b}\left(e^{-1} g e\right) \\
& =\left(\delta_{e} e \delta_{\bar{e}}^{-1}\right)^{-1}\left(h_{a} g h_{a}^{-1}\right)\left(\delta_{e} e \delta_{\bar{e}}^{-1}\right) \\
& =\left(h_{a}^{-1} \delta_{e} e \delta_{\bar{e}}^{-1}\right)^{-1} g\left(h_{a}^{-1} \delta_{e} e \delta_{\bar{e}}^{-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
z_{a}(e):=h_{a}^{-1} \delta_{e} e \delta_{\bar{e}}^{-1} h_{b} e^{-1} \in Z_{a}(\mathfrak{A l}) \quad\left(=Z\left(\Gamma_{a}\right)\right), \tag{2}
\end{equation*}
$$

since $z_{a}(e)$ commutes with all $g \in \Gamma_{a}$. As in 6.0(9), this defines an element

$$
z(e) \in Z(\mathfrak{A l})
$$

Now $z_{a}(e)=\left|\left(h_{a}^{-1} \delta_{e}, e, \delta_{\bar{e}}^{-1} h_{b}, \bar{e}\right)\right| \in \mathscr{A}_{a}$. Hence the indicated path cannot be reduced (cf. 2.6). It follows that $\delta_{\bar{e}}^{-1} h_{b}=\alpha_{\bar{e}}\left(s_{\bar{e}}\right)$ for some $s_{\bar{e}} \in \mathscr{A}_{\bar{e}}$, and so $h_{b}=\delta_{\bar{e}} \alpha_{\bar{e}}\left(s_{\bar{e}}\right)$. Applied to \bar{e} in place of e, we obtain

$$
\begin{equation*}
h_{a}=\delta_{e} \alpha_{e}\left(s_{e}\right) \quad \text { for some } s_{e} \in \mathscr{A}_{e} \tag{3}
\end{equation*}
$$

for each $a \in V A, e \in E_{0}(a)$. From (1), (3), and the commutative diagram

we see that

$$
\begin{equation*}
\phi_{e}=\mathrm{ad}\left(s_{e}\right), \tag{4}
\end{equation*}
$$

whence condition (b). From (2) and (3),

$$
\begin{align*}
z_{a}(e) & =\alpha_{e}\left(s_{e}^{-1}\right) e \alpha_{\bar{e}}\left(s_{\bar{e}}\right) e^{-1} \\
& =\alpha_{e}\left(s_{e}^{-1}\right) \alpha_{e}\left(s_{\bar{e}}\right) \\
& =\alpha_{e}\left(s_{e}^{-1} s_{\bar{e}}\right) \in Z_{a}(\mathfrak{A}), \tag{5}
\end{align*}
$$

i.e.

$$
\begin{equation*}
z_{e}(e)=s_{e}^{-1} s_{\bar{e}} \in Z_{e}(\mathscr{U}), \tag{6}
\end{equation*}
$$

whence condition (c). Next note that, if $\hat{\partial}_{0} e=a, \partial_{1} e=b$, we have

$$
\begin{align*}
\Phi(e) & =\delta_{e} e \delta_{\bar{e}}^{-1} \stackrel{(3)}{=}\left(h_{a} \alpha_{e}\left(s_{e}\right)^{-1}\right) e\left(h_{b} \alpha_{\bar{e}}\left(s_{\bar{e}}\right)^{-1}\right)^{-1} \\
& =h_{a} \alpha_{e}\left(s_{e}\right)^{-1} e \alpha_{\bar{e}}\left(s_{\bar{e}}\right) h_{b}^{-1} \\
& =h_{a}\left(\alpha_{e}\left(s_{e}\right)^{-1} e \alpha_{\bar{e}}\left(s_{\bar{e}}\right) e^{-1}\right)\left(e h_{b}^{-1}\right) \\
& \stackrel{(5)}{=} h_{a} z_{a}(e) e h_{b}^{-1} \stackrel{(5)}{=} z_{a}(e) h_{a} e h_{b}^{-1} . \tag{7}
\end{align*}
$$

Now for any path $\gamma=\left(g_{0}, e_{1}, g_{1}, \ldots, e_{n}, g_{n}\right)$ in \mathfrak{U}, say from $a=\partial_{0} e$ to $b=\hat{o}_{1} e_{n}$, define

$$
\begin{equation*}
z(\gamma)=z\left(e_{1}\right) \cdots z\left(e_{n}\right) \in Z(\mathfrak{H}) \quad(\text { cf. } 6.0(9)) \tag{8}
\end{equation*}
$$

Then it follows inductively from (1) and (7) that

$$
\begin{equation*}
\Phi(|\gamma|)=z_{a}(\gamma) h_{a}|\gamma| h_{b}^{-1} . \tag{9}
\end{equation*}
$$

When γ is a closed path ($b=a$), it follows from (1), (8), and (9) that

$$
\begin{equation*}
z\left(e_{1}\right) \cdots z\left(e_{n}\right)=1 \quad \text { for all closed paths }\left(e_{1}, \ldots, e_{n}\right) \text { in } A \tag{10}
\end{equation*}
$$

whence condition (d).
Now, conversely, suppose that Φ satisfies (a)-(d). Then we have elements $h_{a} \in \mathscr{A}_{a}$, $s_{e} \in \mathscr{A}_{e}, z_{e}(e)=s_{e}^{-1} s_{\bar{e}} \in Z_{e}(\mathscr{H})$, and we have the relations

$$
\begin{equation*}
\phi_{a}=\operatorname{ad}\left(h_{a}\right): \mathscr{A}_{a} \rightarrow \mathscr{A}_{a} \tag{11}
\end{equation*}
$$

as well as (2)-(5). It follows that the calculation (7) remains valid, and hence so also the relations (8) and (9). From (9) it follows that

$$
\begin{equation*}
\Phi_{a}(g)=z_{a}(g) h_{a} g h_{a}^{-1} \quad\left(g \in \Gamma_{a}\right) \tag{12}
\end{equation*}
$$

where $z_{a}: \Gamma_{a} \rightarrow Z_{a}(\mathfrak{A l})$ is the homomorphism defined by (8), via the natural projection $\Gamma_{a}=\pi_{1}(\mathfrak{N}, a) \rightarrow \pi_{1}(A, a)$. Finally, condition (d) says that the homomorphism z_{a} is trivial, and so $\Phi_{a}=\operatorname{ad}\left(h_{a}\right)$, whence $\Phi \in \operatorname{In} \mathbf{G}$, as claimed.
6.5. Corollary. With the notation of 6.1 , we have

$$
\text { In } \mathbf{G} \triangleleft \mathbf{G}^{(V, E)} \triangleleft \mathbf{G}^{(V)} \triangleleft \mathbf{G}^{A} \triangleleft \mathbf{G}
$$

6.6. Successive quotients. Recall the surjection 3.8(10)

$$
\begin{equation*}
\sigma_{a}^{\prime}: \mathbf{G} \rightarrow \operatorname{Aut}\left(\Gamma_{a}\right)_{l_{a}} \tag{1}
\end{equation*}
$$

which projects to the homomorphism σ_{a} in the exact sequence of Corollary 4.2

$$
\begin{equation*}
1 \rightarrow \operatorname{In} \mathbf{G} \rightarrow \mathbf{G} \xrightarrow{\sigma_{a}} \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}} \rightarrow 1 . \tag{2}
\end{equation*}
$$

The restriction of σ_{a}^{\prime},

$$
\begin{equation*}
\sigma_{a}^{\prime}: \mathbf{G}^{A} \rightarrow \operatorname{Aut}\left(\Gamma_{a}\right)_{l_{a}} \tag{3}
\end{equation*}
$$

is a homomorphism 3.8(14). For each superscript $X=A,(V)$, or (V, E) above, we shall write $\operatorname{Aut}\left(\Gamma_{a}\right)_{l_{a}}^{X}=\sigma_{a}^{\prime} \mathbf{G}^{X}$, and $\operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{X}=\sigma_{a} \mathbf{G}^{X}=\sigma_{a} \delta \mathbf{G}^{X}$. Thus we have

$$
\begin{equation*}
\operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E)} \triangleleft \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V)} \triangleleft \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{A} \triangleleft \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}, \tag{4}
\end{equation*}
$$

with successive quotients isomorphic to the corresponding quotients of \mathbf{G} or of $\delta \mathbf{G}$.
We begin by observing that

$$
\begin{equation*}
\mathbf{G} / \mathbf{G}^{A}=\delta \mathbf{G} / \delta \mathbf{G}^{A} \cong \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}} / \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{A} \leq \operatorname{Aut}(A) \tag{5}
\end{equation*}
$$

where $\operatorname{Aut}(A)$ denotes the group of graph automorphisms of A. In many cases of interest, e.g. when Γ_{a} is finitely generated, the graph A is finite [2, (7.9)], and hence so also is the group $\operatorname{Aut}(A)$.
6.7. The groups Aut $^{E}\left(\mathscr{A}_{a}\right)$ and the quotient $\mathbf{G}^{A} / \mathbf{G}^{(V)}$. For $a \in V A$, define

$$
\operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right)=\left\{\begin{array}{l|l}
\phi \in \operatorname{Aut}\left(\mathscr{A}_{a}\right) & \begin{array}{l}
\phi \alpha_{e} \mathscr{A}_{e} \text { is } \mathscr{A}_{a} \text {-conjugate } \\
\text { to } \alpha_{e} \mathscr{A}_{e} \forall e \in E_{0}(a)
\end{array} \tag{1}
\end{array}\right\}
$$

and

$$
\begin{equation*}
\operatorname{Out}^{E}\left(\mathscr{A}_{a}\right)=\operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right) / \operatorname{ad}\left(\mathscr{A}_{a}\right) . \tag{2}
\end{equation*}
$$

Let $\Phi=(\phi,(\gamma)) \in \mathbf{G}^{A}$, and $\delta \Phi=(\phi,(\delta)) \in \delta \mathbf{G}^{A}$. The commutative diagram (for $a \in V A, e \in E_{0}(a)$),

shows that

$$
\begin{equation*}
\phi_{a} \in \operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right) \tag{4}
\end{equation*}
$$

and further that

$$
\begin{equation*}
\phi_{e} \in \operatorname{Aut}\left(\mathscr{A}_{e}\right) \text { extends, via } \alpha_{e} \text {, to an automorphism in } \operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right) . \tag{5}
\end{equation*}
$$

From (4) we have a homomorphism

$$
\begin{align*}
& \phi_{V}: \mathbf{G}^{A} \rightarrow \prod_{a \in V A} \operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right), \tag{6}\\
& \phi_{V}(\Phi)=\left(\phi_{a}\right)_{a \in V A}=\phi_{V}(\delta \Phi),
\end{align*}
$$

and also

$$
\begin{equation*}
\phi_{(V)}: \mathbf{G}^{A} / \mathrm{In} \mathbf{G} \rightarrow \prod_{a \in V_{A}} \operatorname{Out}^{E}\left(\mathscr{A}_{a}\right), \tag{7}
\end{equation*}
$$

$$
\operatorname{Ker}\left(\phi_{(V)}\right)=\mathbf{G}^{(V)}
$$

Concerning the image of ϕ_{V}, consider an element

$$
\begin{equation*}
\left(\phi_{a}\right)_{a \in V_{A}} \in \prod_{a \in V_{A}} \operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right) \tag{8}
\end{equation*}
$$

By (1), there exist elements $\delta_{e} \in \mathscr{A}_{a}\left(e \in E_{0}(a)\right)$ such that $\operatorname{ad}\left(\delta_{e}^{-1}\right) \circ \phi_{a}$ stabilizes $\alpha_{e} \mathscr{A}_{e}$, and hence induces a $\phi_{e} \in \operatorname{Aut}\left(\mathscr{A}_{e}\right)$ such that diagram (3) commutes. Then, with $\phi_{A}=\mathrm{Id}_{A}$, we have defined a candidate $\Phi=(\phi,(\delta))$ with $\phi_{V}(\Phi)=$ $\left(\phi_{a}\right)_{a \in V_{A}}$. The only remaining obstacle is that, for Φ to belong to \mathbf{G}, we must have

$$
\begin{equation*}
\phi_{e}=\phi_{\bar{e}} \quad \forall e \in E A . \tag{9}
\end{equation*}
$$

Thus, if $\partial_{0} e=a$ and $\partial_{1} e=b$, we require an automorphism ε of \mathscr{A}_{e} making the following diagram commute.

This imposes a non-trivial compatibility on the choices of δ_{e} and $\delta_{\bar{e}}$. Thus

$$
\begin{align*}
& \operatorname{Im}\left(\phi_{V}\right)=\prod_{a \in V A}^{\prime} \operatorname{Aut}^{E}\left(\mathscr{A}_{e}\right) \\
& :=\left\{\begin{array}{l|l}
\left(\phi_{a}\right) \in \prod_{a \in V A} \operatorname{Aut}\left(\mathscr{A}_{a}\right) & \begin{array}{c}
\forall e \in E A, \hat{o}_{0} e=a, \hat{o}_{1} e=b, \exists \delta_{e} \in \mathscr{A}_{a}, \delta_{\bar{e}} \in \mathscr{A}_{b}, \\
\text { and } \varepsilon \in \operatorname{Aut}\left(\mathscr{A}_{e}\right) \text { such that }(10) \text { commutes. }
\end{array}
\end{array}\right\} \tag{11}
\end{align*}
$$

Similarly, $\operatorname{Im}\left(\phi_{(V)}\right)$ is the corresponding quotient of $(11) \bmod \Pi_{a} \operatorname{ad}\left(s_{a}\right)$:

$$
\begin{align*}
\mathbf{G}^{A} / \mathbf{G}^{(V)} & =\delta \mathbf{G}^{A} / \delta \mathbf{G}^{(V)} \cong \prod_{a \in V A}^{\prime} \operatorname{Out}^{E}\left(\mathscr{A}_{a}\right) \\
& \cong \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a} /}^{A} / \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V)} \quad(\forall a \in V A) \tag{12}
\end{align*}
$$

7. A filtration structure on $\operatorname{Out}(\Gamma)_{l}$

In order to introduce a useful filtration between $\operatorname{In} \mathbf{G}$ and $\delta \mathbf{G}^{(V)}$ we here introduce an auxiliary group Λ, an epimorphism $D: \Lambda \rightarrow \delta \mathbf{G}^{(V)}$, and a filtration of Λ. The results of these calculations are summarized in Theorem 8.1 below.
7.1. The group Λ. For $a \in V A$ and $e \in E_{0}(a)$ we shall use the notation

$$
\begin{array}{rlrl}
N_{e} & =N_{\mathscr{A}_{a}}\left(\alpha_{e} \mathscr{A}_{e}\right) \quad \text { (normalizer) } \\
Z_{e} & =Z_{\mathscr{A}_{a}}\left(\alpha_{e} \mathscr{A}_{e}\right) \quad \text { (centralizer) } \\
Z_{(e)} & =Z\left(\mathscr{A}_{e}\right) \quad \text { and } & Z_{a}=Z\left(\mathscr{A}_{a}\right) \quad \text { (centers) } \tag{2}
\end{array}
$$

We define a homomorphism ad $_{\mathscr{A}_{e}}: N_{e} \rightarrow \operatorname{Aut}\left(\mathscr{A}_{e}\right)$, by

$$
\begin{equation*}
\alpha_{e}\left(\operatorname{ad}_{\alpha_{e}}(\sigma)(s)\right)=\sigma \alpha_{e}(s) \sigma^{-1} \tag{3}
\end{equation*}
$$

Now define

$$
\begin{equation*}
\Lambda_{a}=\left(\prod_{e \in E_{0}(a)} N_{e}\right) \times \mathscr{A}_{a} \tag{4}
\end{equation*}
$$

For $\lambda_{a}=\left(\left(\sigma_{e}\right)_{e \in E_{0}(a)}, h_{a}\right) \in \Lambda_{a}$, define

$$
\begin{align*}
& \phi_{a}\left(=\phi_{a}\left(\lambda_{a}\right)\right)=\operatorname{ad}\left(h_{a}\right) \in \operatorname{Aut}\left(\mathscr{A}_{a}\right), \\
& \phi_{e}\left(=\phi_{e}\left(\lambda_{a}\right)\right)=\operatorname{ad}_{\mathscr{A}_{e}}\left(\sigma_{e}\right) \in \operatorname{Aut}\left(\mathscr{A}_{e}\right) . \tag{5}
\end{align*}
$$

Now define

$$
\begin{align*}
\Lambda & =\prod_{a \in V A}^{\prime} \Lambda_{a} \\
& :=\left\{\left(\lambda_{a}\right)_{a \in V A} \in \prod_{a \in V A} \Lambda_{a} \mid \forall e \in E A, \partial_{0} e=a, \partial_{1} e=b, \phi_{e}\left(\lambda_{a}\right)=\phi_{\bar{e}}\left(\lambda_{b}\right)\right\} \tag{6}
\end{align*}
$$

We next define the homomorphism

$$
\begin{equation*}
D: \Lambda \rightarrow \delta \mathbf{G}^{(V)} \tag{7}
\end{equation*}
$$

on $\lambda=\left(\lambda_{a}\right)_{a \in V A}, \lambda_{a}=\left(\left(\sigma_{e}\right)_{e \in E_{0}(a)}, h_{a}\right)$, by

$$
\begin{align*}
D(\lambda) & =\Phi^{\lambda}=\left(\phi^{\lambda},\left(\delta^{\lambda}\right)\right) \quad \text { where, for } a \in V A, e \in E_{0}(a) \\
\phi_{A}^{\lambda} & =\operatorname{Id}_{A}, \quad \phi_{a}^{\lambda}=\phi_{a}\left(\lambda_{a}\right), \quad \phi_{e}^{\lambda}=\phi_{e}\left(\lambda_{a}\right), \tag{8}\\
\delta_{a}^{\lambda} & =1 \quad \text { and } \quad \delta_{e}^{\lambda}=h_{a} \sigma_{e}^{-1} .
\end{align*}
$$

The conditions of (6) and (8) and 6.1(4) show that in fact, $\Phi^{\lambda} \in \delta \mathbf{G}^{(V)}$. It is easily seen that D is a homomorphism. We next show that

$$
\begin{equation*}
D: \Lambda \rightarrow \delta \mathbf{G}^{(V)} \quad \text { is surjective. } \tag{9}
\end{equation*}
$$

In fact, let $\Phi=(\phi,(\delta)) \in \delta \mathbf{G}^{(V)}$. By definition of $\mathbf{G}^{(V)}$ (6.1(4)), $\phi_{a}=\operatorname{ad}\left(h_{a}\right)$ for some $h_{a} \in \mathscr{A}_{a}$. For $e \in E_{0}(a)$ put $\sigma_{e}=\delta_{e}^{-1} h_{a}$. The commutativity of the diagram

shows then that $\sigma_{e} \in N_{e}$ and $\phi_{e}=\operatorname{ad}_{\mathcal{A}_{e}}\left(\sigma_{e}\right)$. Since $\phi_{e}=\phi_{\bar{e}}$ it follows that $\lambda=\left(\lambda_{a}\right)_{a \in V A}$ defined by $\lambda_{a}=\left(\left(\sigma_{e}\right)_{e \in E_{0}(a)}, h_{a}\right)$ defines an element $\lambda \in \Lambda$ such that $D(\lambda)=\Phi$.

Finally, we calculate $\operatorname{Ker}(D)$. Since $Z_{a}:=Z\left(\mathscr{A}_{a}\right) \leq N_{e} \forall e \in E_{0}(a)$, we have the diagonal homomorphism

$$
\begin{equation*}
\Delta_{a}: Z_{a} \rightarrow \Lambda_{a}, \quad \Delta_{a}(z)=\left(\left(\sigma_{e}\right)_{e}, h_{a}\right) \quad \text { with } \quad h_{a}=z=\sigma_{e} \forall e \in E_{0}(a) \tag{10}
\end{equation*}
$$

Since, evidently, $\phi_{a}\left(\Delta_{a}(z)\right)=\operatorname{Id}_{\mathscr{g}_{a}}, \phi_{e}\left(\Delta_{a}(z)\right)=\operatorname{Id}_{\mathscr{d}_{e}}$, we have

$$
\begin{equation*}
\Delta Z_{V}:=\prod_{a \in V A} \Delta_{a} Z_{a} \leq \Lambda \tag{11}
\end{equation*}
$$

From (8) we see that $\Delta Z_{V} \leq \operatorname{Ker}(D)$. We claim that this is an equality. For suppose $\lambda=\left(\hat{\lambda}_{a}\right)$ as above and $D(\lambda)=\Phi^{\lambda}=I$. Then from (8) we see that $\operatorname{Id}_{\mathscr{\otimes}_{a}}=\phi_{a}=\operatorname{ad}\left(h_{a}\right)$, so $h_{a} \in Z_{a}$, and $1=\delta_{e}=h_{a} \sigma_{e}^{-1}$, so $\sigma_{e}=h_{a}$ for $e \in E_{0}(a)$. Thus $\lambda_{a}=\Lambda_{a}\left(h_{a}\right)$, so $i \in \Delta Z_{V}$.

In summary, putting

$$
\begin{equation*}
Z_{V}=\prod_{a \in V A} Z_{a} \tag{12}
\end{equation*}
$$

and defining $\Delta=\left(\Delta_{a}\right): Z_{V} \rightarrow \prod_{a \in V A} \Lambda_{a}$, we have an exact sequence

$$
\begin{equation*}
1 \rightarrow Z_{V} \xrightarrow{\Delta} \Lambda \xrightarrow{D} \delta \mathbf{G}^{(V)} \rightarrow 1 . \tag{13}
\end{equation*}
$$

7.2. The quotient $\Lambda / \Lambda^{(E)}$. Let

$$
\begin{align*}
\lambda & =\left(\lambda_{a}\right)_{a \in V_{A}} \in \Lambda, \\
\lambda_{a} & =\left(\left(\sigma_{e}\right)_{e \in E_{0}(a)}, h_{a}\right) \in \Lambda_{a}=\left(\prod_{e \in E_{0}(a)} N_{e}\right) \times \mathscr{A}_{a} . \tag{1}
\end{align*}
$$

Recall that

$$
\begin{equation*}
\phi_{e}=\phi_{e}(\lambda):=\operatorname{ad}_{\mathscr{A}_{e}}\left(\sigma_{e}\right) \in \operatorname{Aut}\left(\mathscr{A}_{e}\right) \tag{2}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\phi_{e}(\lambda) \in \operatorname{ad}\left(\mathscr{A}_{e}\right) \Longleftrightarrow \sigma_{e} \in\left(\alpha_{e} \mathscr{A}_{e}\right) \cdot Z_{e} \tag{3}
\end{equation*}
$$

where $Z_{e}=Z_{\mathscr{A}_{a}}\left(\alpha_{e} \mathscr{A}_{e}\right)$.
We have a homomorphism

$$
\begin{align*}
& \Lambda \rightarrow \prod_{e \in E A} \operatorname{ad}_{\mathscr{A}_{e}}\left(N_{e}\right) \tag{4}\\
& \lambda \longmapsto\left(\phi_{e}(\lambda)\right)_{e \in E A}
\end{align*}
$$

whose image is

$$
\begin{equation*}
\prod_{e \in E A}^{\prime} \operatorname{ad}_{\mathscr{s e}_{e}}\left(N_{e}\right):=\left\{\left(\phi_{e}\right) \in \prod_{e} \operatorname{ad}_{\mathcal{S t}_{e}}\left(N_{e}\right) \mid \phi_{e}=\phi_{\bar{e}} \quad \forall e \in E A\right\} \tag{5}
\end{equation*}
$$

The inverse image of the inner automorphisms is

$$
\begin{equation*}
\Lambda^{(E)}:=\left\{\lambda \in \Lambda \mid \phi_{e}(\lambda) \in \operatorname{ad}\left(\mathscr{A}_{e}\right) \forall e\right\} . \tag{6}
\end{equation*}
$$

Thus we have an isomorphism

$$
\begin{equation*}
\Lambda / \Lambda^{(E)} \xrightarrow{\cong} \prod_{e \in E A}^{\prime}\left(\operatorname{ad}_{\mathscr{A}_{e}}\left(N_{e}\right) / \operatorname{ad}\left(\mathscr{A}_{e}\right)\right):=\left(\prod_{e}^{\prime} \operatorname{ad}_{\mathscr{A}_{e}}\left(N_{e}\right)\right) /\left(\prod_{e}^{\prime} \operatorname{ad}\left(\mathscr{A}_{e}\right)\right) \tag{7}
\end{equation*}
$$

Defining the geometric edges of A by

$$
G E A:=\{\{\mathrm{e}, \bar{e}\} \mid e \in E A\}
$$

we obtain from (7) and the definition (5) of Π^{\prime} an isomorphism

$$
\begin{equation*}
\Lambda / \Lambda^{(E)} \xrightarrow{\cong} \prod_{\{\mathrm{e}, \bar{e}\} \in G E A} \frac{\operatorname{ad}_{\mathcal{A}_{e}}\left(N_{e}\right) \cap \mathrm{ad}_{\mathcal{A}_{e}}\left(N_{\bar{e}}\right)}{\operatorname{ad}\left(\mathscr{A}_{e}\right)} \tag{8}
\end{equation*}
$$

Next observe that, for the homomorphism

$$
D: \Lambda \rightarrow \delta \mathbf{G}^{(V)}
$$

we have

$$
\begin{equation*}
\Lambda^{(E)}=D^{-1}\left(\delta \mathbf{G}^{(V, E)}\right) \tag{9}
\end{equation*}
$$

(cf. 6.1(5)). Hence we have isomorphisms

$$
\begin{equation*}
\Lambda / \Lambda^{(E)} \cong \delta \mathbf{G}^{(V)} / \delta \mathbf{G}^{(V, E)} \cong \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V)} / \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E)} \tag{10}
\end{equation*}
$$

7.3. The group $\Lambda^{[E]} \leq \Lambda^{(E)}$ is defined by

$$
\begin{equation*}
\Lambda^{[E]}=\left\{\lambda \in A \mid \sigma_{e} \in \alpha_{e} \mathscr{A}_{e} \forall e \in E A\right\} . \tag{1}
\end{equation*}
$$

For $\lambda \in \Lambda^{[E]}, \lambda$ as in 7.2(1), put

$$
\begin{equation*}
\sigma_{e}=\alpha_{e}\left(s_{e}\right), \quad s_{e} \in \mathscr{A}_{e} \tag{2}
\end{equation*}
$$

Then

$$
\begin{align*}
\phi_{e}=\operatorname{ad}\left(s_{e}\right), \quad \text { and so, since } \phi_{e}=\phi_{\bar{e}}, \quad z_{e}: & =s_{e}^{-1} s_{\bar{e}} \in Z_{(e)}:=Z\left(\mathscr{A}_{e}\right) \\
& =z_{\bar{e}}^{-1} . \tag{3}
\end{align*}
$$

For $D(\lambda)=\Phi^{i}=(\phi,(\delta))$, we have $\delta_{e}=h_{a} \alpha_{e}\left(s_{e}\right)^{-1}$. It follows from Theorem 4.1 that

$$
\begin{equation*}
\delta \mathbf{G}^{(V, E]}:=D\left(\Lambda^{[E]}\right) \geq \delta \operatorname{In} \mathbf{G} . \tag{4}
\end{equation*}
$$

Hence, putting

$$
\begin{equation*}
\operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E]}:=\sigma_{a}\left(\delta \mathbf{G}^{(V, E]}\right), \tag{5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\delta \mathbf{G}^{(V, E)} / \delta \mathbf{G}^{(V, E]} \cong \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E)} / \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E]} \tag{6}
\end{equation*}
$$

Now $\Lambda^{(E)} / \Lambda^{[E]}$ maps onto $\delta \mathbf{G}^{(V, E)} / \delta \mathbf{G}^{(V, E]}$, but this may not be injective, since $\Lambda^{[E]}$ need not contain $\operatorname{Ker}(D)=\Delta Z_{V}$. Instead we have

$$
\begin{equation*}
\delta \mathbf{G}^{(V, E)} / \delta \mathbf{G}^{(V, E]} \cong \Lambda^{(E)} / \Lambda^{[E]} \cdot \Delta Z_{V} \tag{7}
\end{equation*}
$$

We now analyze the right-hand side of (7). First note that

$$
\begin{align*}
\Lambda^{(E)} & =\prod_{a \in V A}{ }^{\prime} \Lambda_{a}^{(E)}, \quad \text { where } \Lambda_{a}^{(E)}=\left(\prod_{e \in E_{0}(a)}\left(\alpha_{e} \mathscr{A}_{e}\right) \cdot Z_{e}\right) \times \mathscr{A}_{a}, \tag{8}\\
Z_{e} & =Z_{\mathscr{A}_{a}}\left(\alpha_{e} \cdot \mathscr{A}_{e}\right), \\
\Lambda^{[E]} & =\prod_{a \in V A}{ }^{\prime} \Lambda_{a}^{[E]}, \quad \text { where } \Lambda_{a}^{[E]}=\left(\prod_{e \in E_{0}(a)} \alpha_{e} \mathscr{A}_{e}\right) \times \mathscr{A}_{a} . \tag{9}
\end{align*}
$$

The Π^{\prime} notation designates the restriction needed to make $\phi_{e}=\phi_{\bar{e}}$. Since $Z_{e} \cap \alpha_{e} \mathscr{A}_{e}=$ $\alpha_{e} Z_{(e)}, Z_{(e)}=Z\left(\mathscr{A}_{e}\right)$, we have $\left(\alpha_{e} \mathscr{A}_{e}\right) \cdot Z_{e} / \alpha_{e} \mathscr{A}_{e} \cong Z_{e} / \alpha_{e} Z_{(e)}$, and so

$$
\begin{equation*}
\Lambda^{(E)} / \Lambda^{[E]} \cong \prod_{a} \prod_{e \in E_{0}(a)} Z_{e} / \alpha_{e} Z_{(e)} \tag{10}
\end{equation*}
$$

Here the ${ }^{\prime}$ has been omitted on the first product, since the factors from Z_{e} will never affect the compatibility conditions, $\phi_{e}=\phi_{\bar{e}}$.

Next observe that

$$
\Lambda_{a}^{[E]} \cdot\left(\Delta_{a} Z_{a}\right)=\left[\left(\prod_{e \in E_{0}(a)} \alpha_{e} \cdot \mathscr{A}_{e}\right) \cdot\left(\Delta_{E_{0}(a)} Z_{a}\right)\right] \times \mathscr{A}_{a}
$$

where

$$
\begin{equation*}
\Delta_{E_{0}(a)} Z_{a}=\operatorname{Im}\left(\Delta: Z_{a} \rightarrow \prod_{e \in E_{0}(a)} Z_{e}\right) \tag{11}
\end{equation*}
$$

From (10) and (11), and (6) and (7), we conclude that

$$
\begin{align*}
\Lambda^{(E)} / \Lambda^{[E]} \cdot \Delta Z_{V} & \cong \prod_{a} \frac{\prod_{e \in E_{0}(a)} Z_{e}}{\left(\prod_{e \in E_{0}(a)} \alpha_{e} Z_{(e)}\right) \cdot \Delta_{E_{0}(a)} Z_{a}} \\
& \cong \delta \mathbf{G}^{(V, E)} / \delta \mathbf{G}^{(V, E]} \\
& \cong \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E)} / \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E]} \tag{12}
\end{align*}
$$

7.4. The group $\Lambda^{[E Z]}$. For $\lambda \in \Lambda^{[E]}$ as in 7.3, we have from 7.3(3)

$$
\begin{equation*}
z_{e}\left(=z_{e}(\hat{\lambda})\right)=s_{e}^{-1} s_{\bar{e}} \in Z_{(e)}=Z\left(\mathscr{A}_{e}\right) . \tag{1}
\end{equation*}
$$

Suppose that $\lambda^{\prime} \in \Lambda^{[E]}$ and $\lambda^{\prime \prime}=\lambda^{\prime} \lambda$. Then $z_{e}\left(\lambda^{\prime \prime}\right)=\left(s_{e}^{\prime \prime}\right)^{-1} s_{\bar{e}}^{\prime \prime}=\left(s_{e}^{\prime} s_{e}\right)^{-1}\left(s_{\bar{e}}^{\prime} s_{\bar{e}}\right)=$ $s_{e}^{-1} s_{e}^{\prime-1} s_{\bar{e}}^{\prime} s_{\bar{e}}=s_{e}^{-1} z_{e}\left(\lambda^{\prime}\right) s_{\bar{e}}=z_{e}\left(\lambda^{\prime}\right) s_{e}^{-1} s_{\bar{e}}=z_{e}\left(\lambda^{\prime}\right) z_{e}(\lambda)$. Thus we have a homomorphism

$$
\begin{align*}
& \zeta: A^{[E]} \rightarrow \prod_{e \in E A}^{\prime} Z_{(e)} \tag{2}\\
& \lambda \longmapsto\left(z_{e}(\lambda)\right)_{e \in E A}
\end{align*}
$$

Here the Π^{\prime} notation designates the restriction that $z_{\bar{e}}=z_{e}^{-1} \quad \forall e \in E A$ (cf. 7.3(3)). If, in λ, we replace each s_{e} by $s_{e}^{\prime}=s_{e} w_{e}$, with $w_{e} \in Z_{(e)}$, we obtain a new element $\lambda^{\prime} \in \Lambda^{[E]}$ with $z_{e}\left(\hat{\lambda}^{\prime}\right)=z_{e}(\hat{\lambda}) \cdot\left(w_{e}^{-1} w_{\bar{e}}\right)$. Since we can freely choose the $w_{e}^{\prime} s$, it follows that
homomorphism ζ is surjective.
Now define

$$
\begin{equation*}
\Lambda^{[E Z]}=\left\{\lambda \in \Lambda^{[E]} \mid z_{e}(\lambda) \in Z_{e}(\mathfrak{H}) \quad \forall e \in E A\right\} . \tag{4}
\end{equation*}
$$

Recall from $6.0(11)$ that $Z_{e}(\mathscr{H})$ is defined by

$$
\begin{equation*}
\alpha_{e} Z_{e}(\mathfrak{H})=Z_{a}(\mathfrak{H}):=Z\left(\Gamma_{a}\right) \tag{5}
\end{equation*}
$$

for $a=\partial_{0} e$. We put

$$
\begin{array}{ll}
\delta \mathbf{G}^{(V, E Z]} & =D\left(\Lambda^{[E Z]}\right), \\
\operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E Z]} & =\sigma_{a}\left(\delta \mathbf{G}^{(V, E Z]}\right) \tag{6}
\end{array}
$$

It follows from Theorem 6.4 that

$$
\begin{equation*}
\delta \operatorname{In} \mathbf{G} \leq \delta \mathbf{G}^{(V, E Z]} \tag{7}
\end{equation*}
$$

and so

$$
\begin{equation*}
\delta \mathbf{G}^{(V, E]} / \delta \mathbf{G}^{(V, E Z]} \cong \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E]} / \operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E Z]} \tag{8}
\end{equation*}
$$

From (6) and 7.3(4) we see that the groups in (8) are a quotient of $\Lambda^{[E]} / \Lambda^{[E Z]}$. In view of (3) and the definition (4) of $\Lambda^{[E Z]}$ as $\zeta^{-1}\left(\prod_{e}^{\prime} Z_{e}(\mathscr{A})\right.$), we have a ζ-induced isomorphism

$$
\begin{equation*}
\bar{\zeta}: \Lambda^{[E]} / \Lambda^{[E Z]} \xrightarrow{\cong} \prod_{e \in E A}^{\prime} Z_{(e)} / Z_{e}(\mathfrak{H}) \tag{9}
\end{equation*}
$$

From 7.1(13) we have

$$
\begin{equation*}
\operatorname{Ker}\left(\Lambda^{[E]} \xrightarrow{D} \delta \mathbf{G}^{(V, E]}\right)=\Lambda^{[E]} \cap \Delta Z_{V} . \tag{10}
\end{equation*}
$$

It is clear from the definitions $7.3(1)$ and $7.1(10)$ and (11) of the latter two groups that

$$
\begin{equation*}
\Lambda^{[E]} \cap \Delta Z_{V}=\prod_{a \in V A} \Delta_{a} Z_{a E}, \quad \text { where } Z_{a E}:=Z_{a} \cap \bigcap_{e \in E_{0}(a)} \alpha_{e} \mathscr{A} A_{e} \tag{11}
\end{equation*}
$$

Thus, putting $Z_{V E}=\prod_{a \in V A} Z_{a E}$, we have

$$
\begin{equation*}
\operatorname{Ker}\left(\Lambda^{[E]} \xrightarrow{D} \delta \mathbf{G}^{(V, E]}\right)=" \Delta Z_{V E} ":=\prod_{a \in V A} \Delta_{a} Z_{a E}, \tag{12}
\end{equation*}
$$

and D induces an isomorphism

$$
\begin{equation*}
\Lambda^{[E]} / \Lambda^{[E Z]} \cdot \Delta Z_{V E} \xrightarrow{\cong} \delta \mathbf{G}^{(V, E]} / \delta \mathbf{G}^{(V, E Z]} \tag{13}
\end{equation*}
$$

Combining (9) and (13) we see that

$$
\begin{equation*}
\delta \mathbf{G}^{(V, E]} / \delta \mathbf{G}^{(V, E Z]} \cong \operatorname{Coker}\left(Z_{V E}=\prod_{a \in V A} Z_{a E} \stackrel{\omega}{\longrightarrow} \prod_{e \in E A}^{\prime} \frac{Z_{(e)}}{Z_{e}(\mathfrak{U})}\right) \tag{14}
\end{equation*}
$$

where, for $w=\left(w_{a}\right)_{a \in V A}, w_{a} \in Z_{a E}$, and $w_{a}=\alpha_{e}\left(w_{e}\right)$ for $e \in E_{0}(a)$, we put $\tilde{\omega}_{e}(w)=$ $w_{e}^{-1} w_{\bar{e}} \in Z_{(e)}$, and define $\omega(w)=\left(\omega_{e}(w)\right)_{e \in E A}$, where $\omega_{e}(w)$ denotes the class of $\tilde{\omega}_{e}(w) \bmod Z_{e}(\mathfrak{A})$.
7.5. The homomorphism $\Lambda^{[E Z]} \rightarrow \operatorname{Hom}\left(\pi_{1}(A, a), Z(\mathfrak{H})\right)$. Recall the surjection induced by 7.4(2) and (4),

$$
\begin{equation*}
\zeta: \Lambda^{[E Z]} \rightarrow \prod_{e \in E A}^{\prime} Z_{e}(\mathfrak{A}) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\prod_{e \in E A}^{\prime} Z_{e}(\mathfrak{A})=\left\{z=\left(z_{e}\right) \in \prod_{e \in E A} Z_{e}(\mathfrak{H}) \mid z_{\bar{e}}=z_{e}^{-1} \quad \forall e \in E A\right\} \tag{2}
\end{equation*}
$$

For $z=\left(z_{e}\right)_{e \in E A}$ as in (2), each z_{e} defines an element $z(e) \in Z(\mathfrak{A l})$ (cf. 6.0(12)) with components $z_{u}(e) \in Z_{u}(\mathfrak{H}) \forall u \in V A \cup E A$, and $z_{e}(e)=z_{e}$.

Recall the path group of the graph A (a graph of trivial groups),

$$
\begin{equation*}
\pi(A)=\langle E A \mid e \bar{e}=1 \forall e \in E A\rangle . \tag{3}
\end{equation*}
$$

It follows that an element $z \in \prod_{e \in E A}^{\prime} Z_{e}(\mathscr{H})$ defines (in fact, is equivalent to) a homomorphism

$$
\begin{equation*}
\chi_{z}: \pi(A) \rightarrow Z(\mathfrak{A}), \quad \chi_{z}(e)=z(e) . \tag{4}
\end{equation*}
$$

Moreover, $z \mapsto \chi_{z}$ defines a homomorphism, in fact, an isomorphism,

$$
\begin{equation*}
\chi: \prod_{e \in E A}^{\prime} Z_{e}(\mathfrak{H}) \xrightarrow{\cong} \operatorname{Hom}(\pi(A), Z(\mathfrak{H})) . \tag{5}
\end{equation*}
$$

Let $a \in V A$, so that $\pi_{1}(A, a) \leq \pi(A)$. Then we have the composite homomorphism

It is easily seen that res $_{a}$ is surjective, hence

$$
\begin{equation*}
\mu_{a} \text { is surjective. } \tag{7}
\end{equation*}
$$

If $g \in \pi[b, a]$ then $\operatorname{ad}(g): \pi_{1}(A, a) \rightarrow \pi_{1}(A, b)$, and $\mu_{a}=\mu_{b} \circ \operatorname{ad}(g)$. Hence $\operatorname{Ker}\left(\mu_{a}\right)$ is independent of a. We put

$$
\begin{equation*}
\operatorname{In} \boldsymbol{A}=\operatorname{Ker}\left(\mu_{a}: \Lambda^{[E Z]} \rightarrow \operatorname{Hom}\left(\pi_{1}(A, a), Z(\mathfrak{U})\right)\right) \tag{8}
\end{equation*}
$$

The point of this notation is that it follows from Theorem 6.4 that

$$
\begin{equation*}
D(\ln A)=\delta \ln \mathbf{G} . \tag{9}
\end{equation*}
$$

Claim. $\operatorname{Ker}\left(A^{[E Z]} \xrightarrow{D} \delta \mathbf{G}^{(V, E Z]}\right) \leq \operatorname{In} \boldsymbol{A}$.
Say $i \in \Lambda^{[E Z]} \cap \operatorname{Ker}(D)=\Lambda^{[E Z]} \cap \Delta Z_{V}$. Then $\lambda=\left(\lambda_{a}\right)_{a \in V A}$ where $\lambda_{a}=A_{a} h_{a}$ with $h_{a} \in Z_{a E}=Z_{a} \cap \bigcap_{e \in E_{v}(a)} \alpha_{e} \cdot \mathscr{A}_{e}$, say $h_{a}=\alpha_{e}\left(h_{e}\right), h_{e} \in \mathscr{A}_{e}$, and we have

$$
\begin{equation*}
z_{e}:=h_{e}^{-1} h_{\bar{e}} \in Z_{e}(\mathfrak{H}) \quad \forall e \in E A . \tag{11}
\end{equation*}
$$

Each $h_{a} \in Z_{a}(\mathfrak{H})=Z\left(\Gamma_{a}\right)$ defines an element $z(a) \in Z(\mathfrak{H})$ with $z_{a}(a)=h_{a}$ and $z_{e}(a)=h_{e}$ for $e \in E_{0}(a)$. The element $z=\left(z_{e}\right)_{e \in E A}$ defines (cf. (4)) $\chi_{z}: \pi(A) \rightarrow Z(\mathfrak{H})$ by $\gamma_{z}(e)_{e}=h_{e}^{-1} h_{\bar{e}}=z_{e}(a)^{-1} z_{\bar{e}}(b) \quad\left(b=\hat{\partial}_{1} e\right)$, whence

$$
\begin{equation*}
\chi_{z}(e)=z(a)^{-1} z(b) \quad\left(a=\partial_{0} e, b=\partial_{1} e\right) . \tag{12}
\end{equation*}
$$

It follows then that,

$$
\begin{equation*}
\text { If } \gamma=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \text { is a path in } A \text { from } a \text { to } b \text { then } \chi_{z}(|\gamma|)=z(a)^{-1} z(b) \tag{13}
\end{equation*}
$$

Hence, $\gamma_{z}(|\gamma|)=1$ if γ is a closed path $(a=b)$, and so

$$
\begin{equation*}
\left.\chi_{z}\right|_{\pi_{1}(A, a)} \text { is trivial, } \tag{14}
\end{equation*}
$$

whence (10) (cf. definition (8)).
Finally, combining (7)-(10) and 7.4(6), we obtain isomorphisms

$$
\begin{align*}
\operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}^{(V, E Z]} & \cong \delta \mathbf{G}^{(V, E Z]} / \delta \ln \mathbf{G} \cong \Lambda^{[E Z]} / \operatorname{In} \Lambda \\
& \cong \mu_{a}\left(\Lambda^{[E Z]}\right)=\operatorname{Hom}\left(\pi_{1}(A, a), Z(\mathfrak{A})\right) . \tag{15}
\end{align*}
$$

8. Filtration summary

The next theorem assembles all of our calculations of the successive quotients for the $\operatorname{Out}\left(\Gamma_{a}\right)_{l_{a}}$-filtration.
8.1. Theorem. Let $\mathfrak{A}=(A, \mathscr{A})$ be a minimal non-abelian graph of groups, $a \in V A$, $\Gamma_{a}=\pi_{1}(\mathfrak{H}, a), X_{a}=(\widetilde{\mathfrak{H}, a})$, and let l_{a} denote the hyperbolic length function of the Γ_{a}-action on X_{a}. Let
(1) $H=\operatorname{Out}\left(\Gamma_{a}\right) l_{a}=$ the stabilizer of I_{a} in $\operatorname{Out}\left(\Gamma_{a}\right)=\operatorname{Aut}\left(\Gamma_{a}\right) / \operatorname{ad}\left(\Gamma_{a}\right)$.

There is a filtration,
(2) $H \triangleright H^{A} \triangleright H^{(V)} \triangleright H^{(V, E)} \triangleright H^{(V, E]} \triangleright H^{(V, E Z]} \triangleright\{1\}$, with successive quotients described as follows:
(3) $H / H^{A} \leq \operatorname{Aut}(A) \quad$ (6.6(5))
(4) $H^{A} / H^{(V)} \cong \prod_{a \in V A}^{\prime} \mathrm{Out}^{E}\left(\mathscr{A}_{a}\right)$
(5) $H^{(V)} / H^{(V, E)} \cong \prod_{\{e, \bar{e}\} \in G E A} \frac{\left.\operatorname{ad}_{\mathscr{A}_{e}\left(N_{e}\right) \cap \operatorname{ad}_{\mathscr{A}_{e}}\left(N_{\bar{e}}\right)}^{\operatorname{ad}\left(\mathscr{A}_{e}\right)} \quad \text { (7.1(8) and }(10)\right), ~}{\text { (}}$
(6) $H^{(V, E)} / H^{(V, E]} \cong \prod_{a \in V A} \frac{\prod_{e \in E_{0}(a)} Z_{e}}{\left(\prod_{e \in E_{0}(a)} \alpha_{e} Z_{(e)}\right) \cdot\left(\Delta_{E_{0}(a)} Z_{a}\right)}$
(7) $H^{(V, E]} / H^{(V, E Z]} \cong \operatorname{Coker}\left(Z_{V E}=\prod_{a \in V A} Z_{a E} \xrightarrow{\omega} \prod_{e \in E A}^{\prime} \frac{Z_{(e)}}{Z_{e}(\mathfrak{Q})}\right)$
(8) $H^{(V, E Z]} \cong \operatorname{Hom}\left(\pi_{1}(A, a), Z(\mathfrak{A})\right)$
8.2. Explanation of notation. We collect here, in one place, the definitions of the groups occurring in Theorem 8.1.

In Theorem 8.1(3), $\operatorname{Aut}(A)$ denotes the group of automorphisms of the graph A. When A is finite, e.g. when Γ_{a} is finitely generated, $\operatorname{Aut}(A)$ is finite.

In Theorem 8.1(4), $\mathrm{Out}^{E}\left(\mathscr{A}_{a}\right)=\operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right) / \operatorname{ad}\left(\mathscr{A}_{a}\right)$, where

$$
\operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right)=\left\{\phi \in \operatorname{Aut}\left(\mathscr{A}_{a}\right) \mid \phi \alpha_{e} \mathscr{A}_{e} \text { is } \mathscr{A}_{a} \text {-conjugate to } \alpha_{e} \mathscr{A}_{e} \forall e \in E_{0}(a)\right\} .
$$

Then

$$
\prod_{a \in V A}^{\prime} \operatorname{Out}^{E}\left(\mathscr{A}_{a}\right)=\left(\prod_{a \in V A}^{\prime} \operatorname{Aut}^{E}\left(\mathscr{A}_{a}\right)\right) /\left(\prod_{a \in V A} \operatorname{ad}\left(\mathscr{A}_{a}\right)\right)
$$

where $\left(\phi_{a}\right)_{a \in V A} \in \prod_{a \in V A} \operatorname{Aut}\left(\mathscr{A}_{a}\right)$ belongs to $\prod_{a \in V A}^{\prime} \operatorname{Aut}{ }^{E}\left(\mathscr{A}_{a}\right)$ iff, $\forall e \in E A$, $\hat{\partial}_{0} e=$ $a, \partial_{1} e=b, \exists \delta_{e} \in \mathscr{A}_{a}, \delta_{\bar{e}} \in \mathscr{A}_{b}$, and $\varepsilon \in \operatorname{Aut}\left(\mathscr{A}_{e}\right)$ such that the following diagram commutes:

In Theorem 8.1(5), $N_{e}=N_{\mathscr{A}_{a}}\left(\alpha_{e} \mathscr{A}_{e}\right)$, and ad $\mathscr{A}_{\mathscr{A}_{e}}: N_{e} \rightarrow \operatorname{Aut}\left(\mathscr{A}_{e}\right)$ is defined by $\alpha_{e}\left(\operatorname{ad}_{\mathscr{A}_{e}}(\sigma)(s)\right)=\sigma \alpha_{e}(s) \sigma^{-1}$, for $\sigma \in N_{e}, s \in \mathscr{A}_{e}$. We similarly define $\operatorname{ad}_{\mathscr{A}_{e}}: N_{\bar{e}} \rightarrow$
$\operatorname{Aut}\left(\mathscr{A}_{e}\right)$. The notation GEA designates the geometric edges of $A: G E A=\{\{\mathrm{e}, \bar{e}\} \mid$ $e \in E A\}$.
In Theorem 8.1(6), $Z_{e}=Z_{\mathscr{A}_{a}}\left(\alpha_{e} \mathscr{A}_{e}\right)\left(a=\partial_{0} e\right), Z_{(e)}=Z\left(\mathscr{A}_{e}\right), Z_{a}=Z\left(\mathscr{A}_{a}\right)$, and $\Delta_{E_{0}(a)}: Z_{a} \rightarrow \prod_{e \in E_{0}(a)} Z_{e}$ is the diagonal embedding.

In Theorem 8.1(7), $Z_{e}(\mathfrak{H})$ is defined, as in 6.0(11), by $\alpha_{e} Z_{e}(\mathfrak{H})=Z\left(\Gamma_{a}\right)=$: $Z_{a}(\mathscr{H})\left(a=\hat{o}_{0} e\right)$. Further $Z_{a E}=Z_{a} \cap \bigcap_{e \in E_{0}(a)} \alpha_{e} \mathscr{A}_{e}$. For $z_{a} \in Z_{a E}$ we have $z_{a}=\alpha_{e} z_{e}$ with $z_{e} \in Z_{(e)}$, and so we can define a homomorphism

$$
\begin{aligned}
& \tilde{\omega}: Z_{V E}:=\prod_{a \in V A} Z_{a E} \rightarrow \prod_{e \in E A}^{\prime} Z_{(e)}, \\
& \tilde{\omega}\left(\left(z_{a}\right)_{a \in V A}\right)=\left(\left(z_{e}^{-1} z_{\bar{e}}\right)_{e \in E A}\right),
\end{aligned}
$$

and $\prod_{e \in E A}^{\prime} Z_{(e)}$ consists of all $\left(w_{e}\right)_{e \in E A} \in \prod_{e \in E A} Z_{(e)}$ such that $w_{\bar{e}}=w_{e}^{-1} \quad \forall e \in E A$. We have

$$
\prod_{e \in E A}^{\prime} Z_{(e)} / Z_{e}(\mathfrak{A}):=\left(\prod_{e \in E A}^{\prime} Z_{(e)}\right) /\left(\prod_{e \in E A}^{\prime} Z_{e}(\mathfrak{H})\right)
$$

and $\omega: Z_{V E} \rightarrow \prod_{e \in E A} Z_{(e)} / Z_{e}(\mathscr{A})$ is obtained, by passage to the quotient, from $\tilde{\omega}$.
In Theorem 8.1(8), $Z(\mathfrak{A})$ is defined as in 6.0(10).
Some of the groups above are nested as follows, for $a \in V A, e \in E_{0}(a)$,

$$
\begin{gathered}
\Gamma_{a} \geq \mathscr{A}_{a} \geq N_{e} \triangleright Z_{e} \triangleright \alpha_{e} Z_{(e)} \triangleright Z_{a}(\mathfrak{H}) \triangleright\{1\}, \\
Z_{e} \triangleright Z_{a} \quad \triangleright Z_{a}(\mathfrak{A}) .
\end{gathered}
$$

8.3. Remark

(1) In case $Z\left(\Gamma_{a}\right)=\{1\}$, as happens, for example, when Γ_{a} acts faithfully on X_{a}, since $Z\left(\Gamma_{a}\right)$ acts trivially on $X_{a}(1.5)$, we have $Z(\mathfrak{H})=\{1\}$, so $H^{(V, E Z]}=\{1\}$ in Theorem 8.1(8), and, since $Z_{e}(\mathfrak{A})=\{1\}$, we have, from Theorem 8.1(7), an isomorphism
$H^{(V, E]} \cong \operatorname{Coker}\left(Z_{V E} \rightarrow \prod_{e \in E A}^{\prime} Z_{(e)}\right)$.
(2) If A is a tree, so that $\pi_{1}(A, a)=\{1\}$, then again we have $H^{[V, E Z]}=\{1\}$ in Theorem 8.1(8).
(3) Suppose that all the vertex groups \mathscr{A}_{a} have trivial centers, $Z_{a}\left(=Z\left(\mathscr{A}_{a}\right)\right)=\{1\}$. Then $Z(\mathfrak{H})=\{1\}$ also, as in Remark (1) above, so $H^{[V, E Z]}=\{1\}$. Further, Theorem $8.1(6)$ and (7) simplify as follows:

$$
\begin{aligned}
& H^{(V, E)} / H^{(V, E]} \cong \prod_{e \in E A} Z_{e} / \alpha_{e} Z_{(e)} \\
& H^{(V, E]} \cong \prod_{e \in E A}^{\prime} Z_{(e)} / Z_{e}(\boldsymbol{H})
\end{aligned}
$$

8.4. The case of an amalgam (cf. 5.1). Suppose that

$$
\begin{equation*}
A=a \circ \xrightarrow{e} \circ b . \tag{1}
\end{equation*}
$$

We shall view α_{a} and α_{b} as inclusions of a proper subgroup,

$$
\begin{equation*}
\mathscr{A}_{a} \text { 需 } \mathscr{A}_{e} \mathscr{A}_{b} \tag{2}
\end{equation*}
$$

and put

$$
\begin{equation*}
\Gamma=\mathscr{A}_{a} *_{\mathscr{A}_{e}} \mathscr{A}_{b}=\pi_{1}(\mathfrak{U}, A) \tag{3}
\end{equation*}
$$

Let l denote the length function of the Γ-action on $X_{a}=(\widetilde{\mathfrak{H}, a})$, and put

$$
\begin{equation*}
H=\operatorname{Out}(\Gamma)_{l}, \tag{4}
\end{equation*}
$$

which we filter as in Theorem 8.1. We shall make more explicit what Theorem 8.1 tells us in this case.

We have

$$
\begin{equation*}
\operatorname{Aut}(A)=\{I, \sigma\}, \quad \text { where } \sigma(e)=\bar{e} \tag{5}
\end{equation*}
$$

Moreover, it is easily seen that,

$$
\begin{align*}
& H / H^{A} \leq \operatorname{Aut}(A) \text {, with equality iff there is an isomorphism } \\
& \phi: \mathscr{A}_{a} \rightarrow \mathscr{A}_{b} \text { such that } \phi\left(\mathscr{A}_{e}\right)=\mathscr{A}_{e} . \tag{6}
\end{align*}
$$

For $\phi \in \operatorname{Aut}\left(\mathscr{A}_{a}\right)$, let $[\phi]$ denote its class in $\operatorname{Out}\left(\mathscr{A}_{a}\right)=\operatorname{Aut}\left(\mathscr{A}_{a}\right) / \mathrm{ad}\left(\mathscr{A}_{a}\right)$. Then

$$
\left.\begin{array}{l}
H^{A} / H^{(V)} \\
\quad \cong\left\{\left(x_{a}, x_{b}\right) \in \operatorname{Out}\left(\mathscr{A}_{a}\right) \times \operatorname{Out}\left(\mathscr{A}_{b}\right)\right. \\
H^{(V)} / H^{(V, E)} \cong \frac{\exists \phi_{c} \in \operatorname{Aut}\left(\mathscr{A}_{c}\right)(c=a, b)}{\operatorname{such} \text { that } x_{c}=\left[\phi_{c}\right] \text { and }} \begin{array}{l}
\left.\left.\phi_{a}\right|_{\mathscr{A}_{e}}=\phi_{b}\right) \cap \operatorname{ad}_{\mathscr{A}_{e}} \in \operatorname{Aut}\left(\mathscr{A}_{e}\right)
\end{array}
\end{array}\right\} .
$$

In Theorem 8.1(7), $Z_{a E}=Z_{a} \cap \mathscr{A}_{e}=Z\left(\mathscr{A}_{a}\right) \cap \mathscr{A}_{e}:=Z_{\mathscr{A}_{e}}\left(\mathscr{A}_{a}\right)$; similarly $Z_{b E}=$ $Z_{\mathscr{A}_{e}}\left(\mathscr{A}_{b}\right)$. Evidently

$$
\begin{equation*}
Z_{\mathscr{A}_{e}}\left(\mathscr{A}_{a}\right) \cap Z_{\mathscr{A}_{e}}\left(\mathscr{A}_{b}\right)=Z(\Gamma)=Z_{e}(\mathfrak{A}) \tag{10}
\end{equation*}
$$

For $w=\left(w_{a}, w_{b}\right) \in Z_{a E} \times Z_{b E}$ put $\omega_{e}(w)=w_{a}^{-1} w_{b}=\omega_{\bar{e}}(w)^{-1} \in Z_{(e)}=Z\left(\mathscr{A}_{e}\right)$. Then $\omega: Z_{a E} \times Z_{b E} \rightarrow\left(Z_{(e)} / Z_{e}(\mathfrak{H})\right) \times{ }^{\prime}\left(Z_{(\bar{e})} / Z_{e}(\mathfrak{H l})\right)$ is induced by $\tilde{\omega}: Z_{a E} \times Z_{b E} \rightarrow Z_{(e)} \times Z_{(\bar{e})}$, $\tilde{\omega}(w)=\left(\omega_{e}(w), \omega_{\bar{e}}(w)\right)$. Since the first coordinate in $Z_{(e)} \times{ }^{\prime} Z_{(\bar{e})}$ determines the second,
and $\omega_{e}\left(Z_{a E} \times Z_{b E}\right)=Z_{\mathscr{A}_{c}}\left(\mathscr{A}_{a}\right) \cdot Z_{\mathscr{A}_{e}}\left(\mathscr{A}_{b}\right)$ contains $Z_{e}(\mathscr{A})$, it follows from Theorem 8.1 (7) that

$$
\begin{equation*}
H^{(V, E]} / H^{(V, E Z]} \cong \frac{Z_{(e)}}{Z_{a E} \cdot Z_{b E}}=\frac{Z\left(\mathscr{A}_{e}\right)}{Z_{\mathscr{A}_{e}}\left(\mathscr{A}_{a}\right) \cdot Z_{\mathscr{A}_{e}}\left(\mathscr{A}_{b}\right)} . \tag{11}
\end{equation*}
$$

Finally, since A is a tree (cf. Remark 8.3(2)),

$$
\begin{equation*}
H^{(V, E Z]}=\{1\} . \tag{12}
\end{equation*}
$$

8.5. The case of an HNN-extension (cf. 5.5). Let

$$
\begin{align*}
& A=a \\
& \mathscr{A}_{e} \underset{\alpha_{\bar{e}}}{\alpha_{e}} \mathscr{A}_{a} \tag{1}\\
& \Gamma=\pi_{1}(\mathscr{H}, a)=\left\langle\mathscr{A}_{a}, e \mid e \alpha_{\bar{e}}(s) e^{-1}=\alpha_{e}(s) \quad \forall s \in \mathscr{A}_{e}\right\rangle . \tag{2}
\end{align*}
$$

Let l denote the length function of the Γ-action on $X=(\widetilde{\mathfrak{U}, a})$, and

$$
\begin{equation*}
H=\operatorname{Out}(\Gamma)_{l} \tag{3}
\end{equation*}
$$

which we filter as in Theorem 8.1. We have

$$
\begin{equation*}
\operatorname{Aut}(A)=\{I, \sigma\}, \quad \sigma(e)=\bar{e} \tag{4}
\end{equation*}
$$

and
$H / H^{A} \leq \operatorname{Aut}(A)$, with equality iff
$\exists \phi \in \operatorname{Aut}\left(\mathscr{A}_{a}\right)$ such that $\phi\left(\alpha_{e} \cdot \mathscr{A}_{e}\right)=\alpha_{\bar{e}} \cdot \mathscr{A}_{e}$.
For $\phi \in \operatorname{Aut}\left(\mathscr{A}_{a}\right)$ let $[\phi]$ denote its class in $\operatorname{Out}\left(\mathscr{A}_{a}\right)$. Then

$$
\begin{align*}
& H^{A} / H^{(V)}=\operatorname{Out}^{E}\left(\mathscr{A}_{a}\right) \\
& =\left\{\begin{array}{l|l}
x \in \operatorname{Out}\left(\mathscr{A}_{a}\right) & \begin{array}{l}
\exists \phi_{a} \in \operatorname{Aut}\left(\mathscr{A}_{a}\right) \phi_{e} \in \operatorname{Aut}\left(\mathscr{A}_{e}\right) \text { such that, } \\
x=\left[\phi_{a}\right] \text { and } \forall s \in \mathscr{A}_{e}, \phi_{a}\left(\alpha_{e}(s)\right)=\alpha_{e}\left(\phi_{e}(s)\right) \\
\text { and } \phi_{a}\left(\alpha_{\bar{e}}(s)\right)=\alpha_{\bar{e}}\left(\phi_{e}(s)\right)
\end{array}
\end{array}\right\}, \tag{6}\\
& H^{(V)} / H^{(V, E)}=\frac{\operatorname{ad}\left(N_{e}\right) \cap \operatorname{ad}\left(N_{\bar{e}}\right)}{\operatorname{ad}\left(\mathscr{A}_{e}\right)}, \tag{7}\\
& H^{(V, E)} / H^{(V, E]} \cong\left(\frac{Z_{e}}{\alpha_{e} Z_{(e)} \cdot Z_{a}}\right) \times\left(\frac{Z_{\bar{e}}}{\alpha_{\bar{e}} Z_{(e)} \cdot Z_{a}}\right) . \tag{8}
\end{align*}
$$

In Theorem 8.1(7), $Z_{a E}=Z_{a} \cap \alpha_{e} \mathscr{A}_{e} \cap \alpha_{\bar{e}} \mathscr{A}_{e}$, and the map $\omega: Z_{a E} \rightarrow\left(Z_{(e)} / Z_{e}(\mathfrak{A})\right) \times{ }^{\prime}$ $\left(Z_{(\bar{e})} / Z_{\bar{e}}(\mathfrak{H})\right)$ is trivial. Since the second coordinate in the latter product is determined by the first, we see that

$$
\begin{equation*}
H^{(V, E]} / H^{(V, E Z]} \cong Z_{(e)} / Z_{e}(\mathfrak{H})=Z\left(\mathscr{A}_{e}\right) / Z_{e}(\mathfrak{H}) \tag{9}
\end{equation*}
$$

From (2) we can calculate

$$
\begin{align*}
& Z_{e}(\mathscr{A})(\cong Z(\Gamma)) \tag{10}\\
& \quad=\left\{s \in \mathscr{A}_{e} \mid \alpha_{e}(s)=\alpha_{\bar{e}}(s) \in Z\left(\mathscr{A}_{a}\right)\right\} .
\end{align*}
$$

Finally, since $\pi_{1}(A, a)=\langle e\rangle \cong \mathbf{Z}$, it follows from Theorem 8.1(8) that

$$
\begin{equation*}
H^{(V, E Z]} \cong Z_{e}(\mathfrak{A}) \tag{11}
\end{equation*}
$$

References

[1] R. Alperin and H. Bass, Length functions of group actions on Λ-trees, in: S. Gersten and J. Stallings, Eds., Combinatorial Group Theory and Topology, Annals of Mathematics Studies, Vol. 111 (Princeton University Press, Princeton, NJ, 1987) 265-378.
[2] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993) 3-47.
[3] M. Culler and J. Morgan, Group actions on R-trees, Proc. London Math. Soc. 55 (1987) 571-604.
[4] R. Jiang, Collapse of graphs of groups and translation length functions, preprint.
[5] R. Jiang, Bounded automorphisms of groups, J. Algebra, 168 (1994) 903-935.
[6] W.S. Martindale, III and S. Montgomery, The normal closure of coproducts of domains, J. Algebra 82 (1983) 1-17.
[7] J.P. Serre, Trees (Springer, New York, 1980).

[^0]: * Corresponding author

