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Abstract

Let I' be a group. The minimal non-abelian I'-actions on real trees can be parametrized
by the projective space of the associated length functions. The outer automorphism group of
I, Ou(I') = Aut(I'}/ad(I"), acts on this space. Our objective is to calculate the stabilizer
Out(I'y; = {o € Aut(I'}jl o a = I}/ad(I'), where [ is the length function of a minimal non-
abelian action (without inversion) on a simplicial tree. In this case, stabilizing / up to a scalar
factor is equivalent to stabilizing /. The simplicial tree action is encoded by a quotient graph
of groups 2. We produce an exact sequence 1 — InAut(UA) — Aut(A) — Out(I'y, — 1. A
six-step filtration on Out(I'}); is obtained, where successive quotients are explicitly described in
terms of the data defining 2. In the process we obtain similar information about the structure
of Aut(2). We also draw the consequences in the case of amalgams and HNN-extensions.

1991 Math. Subj. Class.: 20E08, 20F28

0. Introduction

Let I' be a group with an action on a real tree X. The associated (hyperbolic, or
translation) length function is

I[=Iy:T —R, I(g) =Min d(gx,x). (1)

These length functions play a role, for tree actions, like that of characters for linear
representations. In particular they are class functions on I
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It is shown in [1, 3] that, if the I'-action on X is “minimal and non-abelian,” then
[x determines X up to unique [ -equivariant isometry (cf. Section 1.7). This permits
one to parameterize such tree actions by the space of such length functions,

LE(I)(c R*)y, (2)

where € (I") denotes the set of conjugacy classes of I'. It is natural to consider length
functions only up to a scalar factor, thus forming

PLF(I")c PR*), (3)

The group Aut(I") acts, by pre-composition, on tree actions, and on length function.
Since the latter are class functions we see that

Out(I') = Aut(I')/ad(I") acts on LF(I'), 4)

and so also on PLF(I"). The dynamics of this action has proven to be a useful tool in
the study of Out(l").
Our object here is to calculate the stabilizer

out(I"), = {x € Aut(I')| I o« = I}/ad(I'), (5)

where / = Iy is the length function of an action (without inversions) on a simplicial
tree X, which is minimal and non-abelian. In this case, stabilizing / up to a scalar factor
is equivalent to stabilizing /. Indeed, /(") has a least value M > 0, so if o € Aut(I")
and /oo =cl, then c/(I'y = I(al') = KI'), so M =cM, and ¢ = 1.

So let X be a minimal non-abelian simplicial I'-tree without inversions, and length
function /. From the theory of simplicial tree actions {cf. [7] or [2]), the tree action
(I',X) is encoded by a quotient graph of groups

I\X =U=(4,). (6)

In [2] there is introduced a notion of morphisms for graphs of groups which, in a
similar fashion, encode morphisms of tree actions.

Now suppose that z € Aut(I') and / oo = /. Then it follows from the theorem
cited above that there is a unique a-equivariant isomorphism y : X — X. If X, denotes
X with I'-action twisted by «, then we have an isomorphism of tree actions (,7) :
(I',X)— (I',X,). This, by the methods of [2], can be used to produce a ® € Aut()
which gives rise to (o, 7).

These ideas are used in Section 4 to produce an exact sequence

1 — In Aut(2) — Aut(A) — Out(I"); — 1. 7

In Section 5 we use (7) to draw some first consequences in the case of amalgams
and HNN-extensions. The utility of (7) for our purposes is that, while Aut(2l) is a
somewhat complicated object, it is, at the same time, very explicitly parameterized in
terms of the data defining U, and so it is susceptible to fairly detailed computation.
This is what we carry out in Sections 6 and 7. The upshot, in Theorem 8.1, is a
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six-step filtration on Out(I");, whose successive quotients are explicitly described in
terms of the data defining 2. In the process we obtain similar information about the
structure of Aut().

1. Tree actions and hyperbolic length

Graphs (and trees) X here will be understood in the sense of [7] or [2]. We write
VX and EX for the sets of vertices and (oriented) edges, respectively, dpe,d1e for
the initial and terminal vertices of e € EX, and e for e with reversed orientation.
For x € VX we put Eo(x) = {e € EX|0pe = x}. The distance d(x, y) between ver-
tices x and y in a connected graph is the minimum length of an edge path joining
them.

1.1. I'-trees. Let I" be a group. A I'-free is a tree X with an action of I" on X as tree
automorphisms. A morphism X — Y of I'-trees is a I'-equivariant graph morphism.
We call a I'-tree X minimal if it has no proper I'-invariant subtree.

1.2. Hyperbolic length (cf. [7, 1, Section 6]). Let X be a I'-tree and g € I'. Define
Ix(g) and X, CX as follows:

Inversions. If g* fixes a vertex but g does not then there is a unique
geometric edge {e,e} such that ge = 2. We then put Ix(g) = 0 and (1)
X, =0, and call g an inversion. Every {g)-invariant subtree contains e.

If g is not an inversion we define

Ix(g) = }\glyr} d(gx,x),

(2)
X, ={xeVX|d(gx,x)=1Ix(9)}

Then X, is the vertex set of a subtree of X, also denoted X;. We further distinguish
two cases.

Elliptic. 1x(g) = 0, and Xj is the tree of fixed points of g. Every (g)- 3)
invariant subtree of X meets Xj.

Hyperbolic. 1x(g) > 0. Then X, is a linear subtree, called the g-axis,
along which ¢ induces a translation of amplitude /x(g). Every (4)
(g)-invariant subtree contains X,.

The function Iy : I' — Z is called the hyperbolic length function of the I'-tree X.
For g,h € T we have Ix(hgh™!) = Ix(g) and Xpgh— = hX,. Moreover, for n € Z, we
have Ix(g") = |n|lx(g), and X, C X;», with equality if n- Ix(g) # 0.



112 H. Bass, R. Jiang/Journal of Pure and Applied Algebra 112 (1996) 109155

For x € VX and g € I put L,(g) = d(gx,x). If g is not an inversion then it follows
by definition that

Lx(g) = Min Li(9), 5)

and the minimum is achieved exactly at x € Xj.

1.3. Lemma. Let (o, y) : (I',X) — (I'",X") be a morphism of tree actions, i.e. «: T —
I'" is a group homomorphism and v : X — X' is an a-equivariant tree morphism. Let
[ and ' denote the corresponding hyperbolic length functions. Then, for g € ', we
have

I'(a(9)) < U(9),

with equality unless g is hyperbolic on X and y is not injective on X,

Proof. If g fixes x € VX then a(g) fixes p(x) € VX'. If g inverts e € EX then a(y)
inverts y(e) € EX’. In both of these cases, /(g) = 0 = /(a(g)). Suppose finally that g
on X is hyperbolic, and let x € VX,. Then

I(g) = dyx(gx,x) > dx:(y(gx), y(x)) = dyr(2(g)y(x), 7(x)) = I'(a(g)).

The (a(g))-invariant subtree y(X;) of X' meets X; . If y on X, is injective, then
clearly y(X,) must be the a(g)-axis, and /’(a(g)) = I(g). If 7 on X is not injective,
then it must fold two adjacent edges y(e) = v(f):

y x z
oO—>—0—€—0
€ f

Suppose that g translates X, in the direction of ¢, and /(g) = n. If n = 1, then it
is easy to see, by equivariance of y, that y folds X, like an accordion down to a
single geometric edge, which is inverted by a(g), whence I(a(g)) = 0. If n > 1, then
z € [gy. y], and so, since y(y) = ¥(2),

i(g) =d(gy,y) > d(gy,2)
> d(y(gy),y(z)) = d(a(g)y(»), 7(»))

> I'(a(g)). U
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1.4. Proposition (cf. [3, Proposition 3.11). Let X be a I'-tree with ly # 0. Then there
is a unique minimal I'-invariant subtree,

Xr = U Xy,
gerl, lx(g)>0

and er = lx.
1.5. Proposition. If I' < G = Aut(X) acts minimally on X then the centralizer,
Zg(I') (= Autr(X)) = {1},

except in the following cases:
(e) X =0 o, and I' = G has order 2.
(Z) X 2 Z, I acts by translations, and Zg(I') is the full group of translations.

Proof. Let z € Zg(I'), z # 1. If z inverts an edge e, then {e,e} is [-invariant so
X = o~£—o (minimality), and we have case (e). If z is not an inversion then the tree
X, is I'-invariant, so X = X; (minimality). If z is elliptic then z is the identity on
X, = X, contradicting z # 1. Then z is hyperbolic, so X = X, = Z. The centralizer
of the translation, z, in the dihedral group Aut(X) is the group of translations, whence
case (Z2). U

1.6. Abelian actions. Let ¢ : ' — Z be a homomorphism. Then I' acts on the linear
tree X(¢) = Z by translation, via ¢: gn = ¢(g)+n for g € I', n € Z. Then clearly

Ixo)(9) = lo(g)|.

Call a I'-tree X abelian if Iy = |p| for some homomorphism ¢ : I' — Z. It is known
then that ¢ is unique up to a factor 1 ([1, (1.4)]). Moreover there is a I'-equivariant
morphism X — X (¢), unique up to a translation of X(¢) [1, p.344].

For a I'-tree X without inversions, the following conditions are equivalent (cf. [1,
Section 7]):

(a) X is abelian.

(b) lghg™'h™')y=0forall gh e T (I =Iy).

(c) I(gh) < l(g)+ I(h) for all g,h € T.

(@) X;NX, #0 forall g heT.

(e) I fixes a vertex or an end of X.

1.7. Non-abelian actions. For these we have the following uniqueness theorem.
Theorem ([1, (7.13)], or [3]). Let X,Y be minimal non-abelian I'-trees without in-

versions. If Iy = ly then there is a unique I'-morphism ¢ X — Y, and it is an
isomorphism.



114 H. Bass, R Jiang/Journal of Pure and Applied Algebra 112 (1996) 109-155

Proof. In [1, (7.13)] it is shown that if /y = /y then there is a (unique) I"-isomorphism
¢o : X — Y. It remains only to show that, if /x = /y and if ¢ is any I'-morphism,
then ¢ is an isomorphism, hence ¢ = ¢. Since {y = Iy we know from Lemma 1.3
that, for hyperbolic g € I', ¢ : X, — Y, is an isomorphism. Moreover it follows from
[1, (7.4)] that ¢ preserves distance between hyperbolic axes. Let g,h € I' be hyperbolic
with disjoint axes. (These exist since X is non-abelian: [1, (7.3), (7.4) and (7.6)].) Let
[u,v] = [Xy, X;] be the bridge from X to X;. Then [¢(u), d(v)] = [¥y, Y4]. Since both
¢ and ¢¢ carry X; to Y, and X; to Yy, we have ¢p(u) = ¢o(u). Now the locus where
¢ and ¢g agree is a non-empty I'-invariant set of vertices in X on which ¢, like ¢,
is distance preserving. By minimality, this set of vertices spans X. Lemma 1.8 then
shows that ¢ is an isometry on X, hence ¢ = ¢po. O

1.8. Lemma. Let ¢ : X — Y be a morphism of trees, and let S C VX be a spanning
set of vertices. (Le. the smallest subtree of X containing S is X itself.) If ¢|s is
distance preserving then ¢ on X preserves distance, and hence is injective.

Proof. If ¢ is not injective then it “folds” two adjacent edges

oo BO=P(]).

e f

Since S spans X, e and f belong to geometric edge paths [s,, '] and [s,,z’], respec-
tively, with s,,s,,)’, 2/ € §.

Sy x y y

o—+ —O—>—0— . - —0
e

s, x z z'

o— . —O0—»—0— - —0
f

Then clearly [y’,2'] = [)/,x] U [x,z'], whereas the geodesic [¢()'), ¢(z')], because of
the fold, is contained in the shorter edge path ¢([y’, ¥]) U ¢([z,z']). This contradicts
the fact that ¢ preserves distance on S. [

1.9. The actions of Aut(I") and Out(I'). Let I be a group, with automorphism
sequence

1—»Z(F)—»Fﬁi—»Aut(F)—»Out(F)—»l. (N

Here Z(I') = center of I', and ad(g) is the inner automorphism, sending x to grg~".

Let X be a tree and G = Aut(X). Actions of I' on X correspond to homomorphisms

p € Hom(I',G). Let us write here X, and /, for the corresponding I'-tree and length
function.



H. Bass, R Jiang!Journal of Pure and Applied Algebra 112 (1996) 109-155 115
The group Aut(I") acts on Hom(I',G) by o : p — p o a. The stabilizer of p is
Au(I), ={z|pox = p}
={a|g'a(g) € Ker(p) for all g € I'}. 2)

This is trivial when p is faithful (i.e. injective).
We are interested in the stabilizer of the isomorphism class (p) of p (or of X,).
Observe that

X, =X, iff p’=ad(y)op for some ye G. 3)

Here y : X — X is the I'-isomorphism X, — X, :9(p(g)x) = p'(9)y(x) for g € I,
x € X, ie. yp(g) = p'(9)y in G. Any two such y differ by a I'-automorphism of X),.
If X, is minimal and non-abelian it follows from Proposition 1.5 that Aut;(X,) = {1},
and so y above is unique.

Now Theorem 1.7 in this case gives us the following result.

1.10. Theorem. Let p : I' — G = Aut(X) define a minimal non-abelian I'-tree X,,.
Let « € Aut(I"). The following conditions are equivalent.

(a) X, = Xpou (ice. x € Aut(I)p)).

(0) lpou(=lp0a) =1, (ie. o€ Aut(I),,).

(c) There is a (unique) y € G such that p(a(g)) = yp(g)y~" for all g€ I.

Remark. In view of (c), we have a map to the normalizer of pI', Aut(I");, — Ng(pI'),
o — v which is easily seen to be a homomorphism.

1.11. Corollary. In Theorem 1.10, suppose that p is the inclusion of a subgroup
I'<G,and ! =1, Then

Aut(T'), = Ng(I'),

the normalizer of I' in G.

Proof. The natural homomorphism Ng(I') — Aut(I') is injective, since Autr(X) =
Zg(I') is trivial, and its image is Aut(I").,), which, by Theorem 1.10, coincides with
Au(I')y,. O

The following lemma will be used in Section 6 below.

1.12. Lemma. Let X be a minimal non-abelian I'-tree. Let (a,4) : (I X) — (I, X)
be an isomorphism of tree actions: « € Aut(I'), A € Aut(X), and A(gx) = a(g)A(x)
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for geI', x € X. If o = ad(u) is an inner automorphism, u € I', then i = u, and
hence A induces the identity on A = IN'X.

Proof. Since u : X — X is also equivariant for o = ad(u), we have A = uv with v €
Autr(X'). When X is minimal non-abelian we have Autr(X) = {1}, by Proposition 1.5,
whence A =u. [

2. Graphs of groups and length functions

2.1. A graph of groups U = (4,.%/) consists of a connected graph A, groups .o/,
(a € V4), and o, = oz (e € EA), and monomorphisms o, : &/ — .. The path
group is

n(W) = [( % o) FEAYN

where F(EA) is the free group with basis £4, and N is the normal subgroup that
imposes the relations

ee =1
and
eag(s)e™" = a(s)
for all e € FA, s € of,. We identify 7, and E4A with their images in (W) (cf. [2,

Section 1]).

2.2. Paths in A. A path in U is a finite sequence

?:(ganlag]’eZa""gn——laensgn)s (1)

where (e|,...,e,) is an edge-path in 4, say ¢1e; = a; = dpeir (1 <i <n), ap = doer,
a, = O1e,, and we have g; € o, (0 <i < n). We call y a path of length n from aqy
to a,, and put

7] = goergiez - - - gn—1€ngn € n(A). (2)
For a,b € VA4 let

Pla, b] = the set of paths (in ) from a to b, 3)
and

n[a,b) = |Pla, b]| C n(A). (4)
For g € n[a,b] define the length

La(g) = min{length(y) | y € P[a, b, 7| = g} (5)
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Note that Ly : n[a,b] — Z factors through .o/, \7[a, b]/.<p.
With y € Pla,b] as above (@ = ap, b = a,) and
0= (ho, f1. 15 s Bm—1s fm> hm) € P[b, ]
we can define the composite 76 € Pla,c] by
70 = (go,€1,915- - -s€n, gnhos f1,h1s- s fons Bm).
Clearly |yd] = |y||6]. Whence a product
n[a, b] X n[b,c] — nla,c] (6)
given by multiplication in 7(2).
Defining
7 =9, " ema, 007 S ELGy ) € Plbal, (7)
we have |y~!| = |y|~!, whence
nlb,a] = nfa,b]™". (8)
Thus we have the fundamental group at a,
I, =m((W,a) = nla,a]. 9)
It is easily seen that, for g € n[a,b], we have
I,-g=mnla,bl=g- I} (10)
Let T C A4 be a spanning tree, and put
(W, T) = n(W)/(e = 1 for all e € ET). (1)
Then (cf. [2, (1.20)]) the projection
qg: (W) - m(WT)
restricts, for each a € VA, to an isomorphism
ga: m(Wa) = m(AT). (12)
The inverse g, of g, is given as follows. For a,b € VA, let y,, = (e1,...,e,) denote

the edge path in T from a to b, and put g,» = |yas| = €1--- e, € n[a,b]. Then o,

is given on generators by o,(s) = ga,;,sga_,; for s € o, and g,(e) = g4 0,0€9

—1
ade for

e € EA. Since g, 59s.: = Gac» it follows that the following diagram is commutative:

d
n,(WA,a) —Q(Lﬂ)» 7, (A, b)

Ty

T (UT) ———— =, (UA,T)

(13)
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2.3. The covering tree X, = (Q’I\;z), at a base point a € VA4, has vertices

VX, = [] nla, b))/t

bevVA

For g € n[a,b] we let [g], denote its class in n[a, b]/ 4. The group I, = m;(U,a) acts
on X, so that g[h], = [gh], for g € I, h € n[a,b]. The orbits are the sets n[a, b]/.,
which are also the fibers of the projection p: X, — 4 = [\X,.

To calculate the length function

l(=1g): Iy = m(Wa) — Z
we use the following result from ([4, Lemma 1.1]):
For x = [g)s € n[a,b)/ sy and y = [h]. € n[a,c)/ ., their distance in X, is
given by
dy,(x, y) = Lalg™'h), (1)

where g='h € n[b,c]. For a=b=c and g =1, so that x = [1],, this gives
Ly(h) = d(hx,x) for h € I,.

Now for g € I'; and x = [h], € =[a,b]/«,, we have d(x,gx) = d([Alp,[ghly) =
Ly(h~'gh). Now from 1.2(5) it follows that

lo(g) = Min Lu(h™"gh). (2)

h€nfa, b)

If g € n[b,a] then we have an isomorphism of tree actions
(ad(g),g°) : U, Xa) — (T, Xp) (3)

given by ad(g)(h) = ghg™' for h € I, and g - [h], = [gh]. for h € n[a,c]. (Cf. [2,
(1.22)]). It follows then from Section 1.3 that, for 7 € I,

lo(ghg™") = la(h). 4)

2.4. Quotient graphs of groups (cf. [2, Section 3]). Let X be a I'-tree without inver-
sions. The construction of a “quotient graph of groups”

IN\X =U=(4, )
depends on choosing subtrees
TcSck

and elements (g )xeys of I', so that, if p: X — 4 := I''\)X is the natural projection,
then p: VT — VA is bijective, p : ES — EA is bijective, and g.x € VT for all x € VS,
with g, = 1 if x € VT. Denoting the inverses of the above bijections by @ — a* and
e — e, respectively, we have o, = I,x, o, = Ix, and, if &p(e) = a and Jp(e* ) = x,
then o, = ad(gy) : e — ;.
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The homomorphism s : n(W) — I' is then defined on generators by y(g) = g for
g€ .o, =1I,,and Yle) =g, := gogl_1 for e € EA, where ¢; = gp,.v) (/ =0,1). Then
Y restricts to isomorphisms ¥, : [, = 7 (W, a) — I' for each a € VA.

There is further a yj,-equivariant isomorphism of trees, 7, : X, = (“fITa) — X defined
on [g]s € n[a, b, C VX, by 1.([g]s) = ¥(g)-b*. Thus we have an isomorphism of tree
actions,

(l!/aara) : (FaaXu) - (F»X)

2.5. Adapting to an automorphism. Keep the notation of 2.4 above, and let p: I’ —
G = Aut(X) define the given I'-action on X. Let « € Aut(I'), and let X, denote the
tree X with ['-action defined by p o a.

Suppose that o € Aut(l"),). This means that there is a ~ &€ G which is a I'-
isomorphism 4 : X — X, : A(p(g)x) = pla(g))i(x), for g € I and x € X. Thus
we have the stabilizers

rp,x = Fpocz,/l(x) (1 )

where I', . = {g € T'| p(g)x = x}, and similarly for I’ ;).
Let 7T C S CX and (g, )reys be the fundamental data as in 2.4 above used to construct

I\X = U = (4, 7).

Then we can use AT C AS C X, as fundamental domains for the p o a-action. Further,
for x € VS, we have g,-x € T (and g, = 1 for x € VT), so p(a(gx NA(x) = A(p(g:)x) €
VAT (and g, = 1 for Zx € VAT). Thus, defining ¢’ = g, we can use (g}, )ireris in
defining A’ = '\ X,. It then follows from the construction (see 2.4) that

A’ = A!

In fact, for @ € V4 and e € EA let (a*) and (e*) denote their lifts to VAT and EAS,
respectively. Then (a¥) = 4ia” and (e¥) = ie¥, clearly. Further,

9i = Goiery = Goer = Gigex = Gorer = gi.
Hence, if a = ége, then

x, =ad(go) : Ao = Tyex — Ay =14«
coincides with

o, = ad(gy) : A, = poyier — Ao = Dpoy sux.

Further, the homomorphisms :z(2) — I' and y': (W) — I are both the inclusion
on of, = o/, and on e € EA as above,

W(e)=gog'T = gogi' = ve).
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Thus
W =y (W) —T.

For a € VA put I, = my(W,a) = I} and X, = (Q/I\,?z) = X/. Then we have tree
isomorphisms
,: X, —>X and T,:X — X,

a

which are equivariant for y, : I, — I'. Let [g], € n[a,b]/ s C VX,. Then, by definition
(cf. 2.4),

tallgly) = ¥(g) - b*

and
o([91s) = p(a((g)))(®" )
= p(a(¥(g))Ub™)
= Mp((g))b™)
= M1a([g]5))-
Thus we have a commutative diagram

_.__Xv

X, §
T”l l‘r‘;
X —— X,.

2.6 Reduced paths. Let

¥ = (4o, €1,91, > Gn—1,€n.Gn) ()

be a path in U, with vertex sequence ag,a,...,an, as in 2.2(1). We call y reduced if,
for i = 1,...,n— 1, either ;1| # € or ¢;; = ¢ and g; ¢ a5 (4, ). When ay = a,
we call y cyclically reduced if it is reduced, and either e, # e, or ¢, = €, and
gngo & e, (He,).

If g € n[a,b] then g = |y| for a reduced path y € P[a,b], and length(y) = Ly(g) for
any such y (cf. [2, (1.10)]).

2.7. Lemma. For any closed path v in U, there are paths y\,y, such that
|y1y2y1_1|, y1 is reduced, and y, is cyclically reduced.

Ay
/

Proof. Let

Y= (90,31,91,92,---’gn~1,enagn)-
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If y is cyclically reduced, then let y; = y, and let |y;| = 1. Now suppose that y is
reduced, but not cyclically reduced. We prove the lemma by induction on Ly(|y|) = #.
Since y is not cyclically reduced, ¢; =€, and

gngo = 05,(s) € oz, (e, ).
Since eoz(s)e = a.(s) for all s € o,
€ngngo€ = enGngoen = €n0lz,(5)en = o, (5).
Let
7' =(4g1,€2,....€n_1,gn—1€ngngoe1)
=(g1,€2,--»€n—1,Gn-1%,(s))-

Then Ly(|y'|) = n— 2. By induction, |y'| = |y} y’zy’l_l| for some paths y| and 75, where
v, 1s cyclically reduced. So

7] = (goe1)(g1€2 - - - en—1Gn—1€ngndoe: )(goer) '
= (goe)([¥']X(goer) ™"
= (goe) V%57, 1(goer) ™"
Let 7, be a reduced path representing (goe1)|y]|, and let y, = 5. Then
7l = vy,

where y, is cyclically reduced. O

3. The category of graphs of groups

This section is a resume of material from [2, Section 2].

3.1. Morphisms of graphs of groups (cf. [2, Section 2]). A morphism
P = (1) A=(4,o) - U =, ")

of graphs of groups consists of a graph morphism ¢ (or ¢,) : 4 — 4’, group homo-
morphisms

b1 Ay — Ay, (@acVA) and ¢, = ¢z : A, — Ay (e € EA),

and families (4)acya, (Je)ecrs in n(WA), satisfying the following conditions.
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For a € VA, y, € m(W, ¢(a)). For e € EA, doe = a, we have 5, := 7, 'y, € o),
and the following diagram commutes:

a6 Nod,
g —————> i,

|

o,

’
Apie)

¢ Af'ﬁ(ﬂ (])

The identity morphism of U is I = (¢,(y)) given by ¢4 = Idy, ¢, = Id, and
w=1forue VAUEA.
3.2. The induced homomorphism
@ (or D) w(A) — (W)

is defined on generators by @[, = ad(y,) 0 ¢, i.e. D(s) = y,du(s)y,! for s € .o, and
P(e) = yeqﬁ(e)y;l for e € EA. For a,b € VA, & restricts to maps

@ 1[4, 0] = 7% [P(a), (b))
In particular, for @ = b, we have the homomorphism

¢a . ‘It[(Q[,a) - 7[1(‘21/, d)((l))

3.3. The tree morphism
8, : (Wa) — (W, $(a),
which is ®,-equivariant, is defined on the vertices n%[a, b]/.o; by
Bu([g]s) = [D(9)7a)p(0)-
Thus we have a morphism of tree actions
(Pa> Ba) : (T Xa) = (T X
where I, = m(U,a), X, = (W, a), and similarly for I, and X}, .
3.4. 00 = (¢,(9)), and the path map. The morphism 0% is obtained by preserving ¢

and J, (e € EA), but “suppressing” all y, (@ € VA). Thus 6® = (¢, (")), where ), =
(a € VA), and y, =3, = 8. (e € EA) (cf. [2, (2.9)]). We have [2, (2.9)]

P, = ad(ya) 0 (09), : (W, a) — m (WA, p(a)). (1)
Evidently,
o(0P) = 0. (2)
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For a path y = (go,€1,....en,gn) in W we define the path
3D(1) = (far(G0)0ers $(€1), 85 ar(g1)ders Ble2)s .., blen), 05 bay (gn)): (3)
Note that
05" € Hiaz) = Fieie) = iy
Ga(9i) € Lyoney = i piey
dei1 € Siererr) = Zorgierr
So
05 a(90)0e, € Hipey (1 <i<n=1),

ba,(90)de, € dler and 5g_n]¢a,,(gn) € &{fl;@(eny Note that (¢(e1), ..., P(en)) is an

(&)

edge path in 4’. Thus

d®(y) is a path in A’, and |5P(y)| = (dP)(|7)). (4)
Further,

If g € n¥[a,b] then (90)(9) € 7™ [§(a), p(b)] and Lo ((3P(9)) < Lulg).  (5)
In fact, we can write g = |y| with y reduced. Then Ly(g) = length(y), while

Loy (69(g)) < length(d9(y)) = length(y).

3.5. Lemma. Assume that
(1) ¢4 is injective,
(i) ¢, is injective Ya € VA, and
(iii) ¢, is an isomorphism Ve € EA.
Then 6@ preserves (cyclically) reduced paths.

Proof. Let 7 = (e}, g1,e2) be a reduced path, and let dpe; = a. We only need to show
that

SB(y) = (Pler), 83 pa(g1)de,, Ple2))

is still a reduced path. Since y is reduced, either e; # &, or else e, = €, and g, ¢
az (o4, ). Recall that ¢ is injective. If e; # @, then ¢(e;) # ¢(ez), and OP(y) is
reduced. Now suppose that e; = &, and g; ¢ oz (%, ). Since e; = &3, Pp(e1) = P(e2).
If 5&(y) is not reduced, then

35 a(91)0e; = 2z ()
for some s € &f‘;(el). Thus

Ga(g1) = 8z,%4,)(5)05," = Oe,Up(er)(5)5,, -
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Since ¢, is an isomorphism,
$ € Aoy = Aoy = Per(Hey)
Suppose that s = ¢,,(s1) for some s; € oZ,. Then
Da(g1) = Ger%g(e2) ()0, = beytpier)(Pe, (51))35;
By 3.1(1),
Bestgien)(Dex (51))07," = hal0te,(51)).
So ¢.(g1) = da(@.,(s1)). Since ¢, is injective,
g1 = 0, (51) € ey (He,) = 05 (e, ),

which contradicts the fact that y is reduced. Thus 5®(y) is reduced. [

3.6. The composition of morphisms (cf. [2, (2.11)]),

o P=(¢,(1)) or ¥'=(¢".(+") o

is given by

¢// _ ¢/ o ¢ — (¢II,(,))/I)) . QI N QIH,

defined by ¢ = ¢4, o ¢y, and, for u € VAUEA, ¢/ = ¢,y 0 du, and 3}/ =

From [2, (2.11)], we have, for e € Eg(a),
5;’ = d):b(a)(ée) ' 5;5(e)'
We further have
@ =@l od: m(WA) — m(A”)
and, for a € VA,

~1/ ~/ ~
(¢a”, ¢a ) = (¢dl)(a)’ ¢¢(a)) o (¢a, d)a) : (Fa,Xa) — (F:ﬁl”(a)’Xd/)/”(a))

(1

(2)

D'(yu )V:;,(,,)‘

(3)

4)

(5)

where we write I, = n1(U,a), X, = (QT,Z), and similarly for Fd’)’,,(a) and X",,(a).

We further note that

(P o ®) =60 050

(6)

To see this, put 6@ = (¢,(5)), 6&' = (¢',(5')), and 6®" = (¢”,(5")). The composition
formulas for ¢/ and ¢,/ (u € VAU EA) are unaffected by 6, hence still valid. Thus the

only thing to be checked is that, for e € E¢(a), a € VA, we have

0 = (60")g,@)(8e) * S, e)-

Since 0, € ;) and (0D )p o)y,

= ‘%A(a)’ (7) follows from (3).

(7)
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The above notions of morphism and composition make graphs of groups the objects
of a category, with identity morphisms as in 3.1. In particular,

& is an isomorphism iff ¢, and each ¢, (u € VAU EA) is an isomorphism. (8)

In this case,

&~ =(¢/,(7)) is given by ¢} = ¢,

9)
and, for u € VAUEA, ¢, = ¢, ', and ¥}, = &' (3.)7".

3.7. The group Aut() is now defined, and we have the exact sequence
1 — Aut'(U) — Aut(A) L5 Aut(4),

where, for @ = (¢, (7)), g4(®) = ¢4. Thus & € Aut(N) iff ¢, = Id,, in which case
¢, € Aut(Z,) for all u € VAU EA. We have further a homomorphism

NS | EAEAR | PATEA)

acVA eckEAq

given, on @ = (¢, (7)), by

q(<15) = ((¢a)a€ VA» (¢e)e€EA)-

3.8. The homomorphism o, : Aut(W) — Out(I}),,. For a € V4 we have I, = n;(U,a),
the I',-tree X; = (9/1:71), and its hyperbolic length function 7, = Iy, .

Fix a spanning tree 7 CA. For a,b € VA let y,;, = (ey,...,e,) denote the re-
duced edge-path in 7 from a to b, and put gop = |yas] = e - e, € nla,b].
Note that g;p95. = gg.. Further, from 2.3(3) we have an isomorphism of tree
actions,

(ad(gb,a); gb,a') : (FaaXa) - (FbaXb)- (1)

Let @ = (¢,(y)) € Aut(U). Then from (1) and 3.3 we have the isomorphisms of
group actions

(¢as¢a) (ad(g)ag')
(Fa,Xa) —’—')(Fqﬁ(a)aXMa))_"—’(raaXa) (2)

where g = gg4(a)- This yields
Cb(a) = ad(ga,¢(a)) o @,

. . (3)
(p(a) = (ga,¢(a)') 0P,
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so that

(di(a),di(a)) D (I, X)) — (I, Xy) is an isomorphism of tree actions.
It follows from Lemma 1.3 that

D) preserves the length function /,

From the commutative diagram

we see that
d, induces ¢4 on 4 = I\ X,.

Let b € V4. We have a commutative diagram

P, ad(ga,zb(a))
I * L — I,
ad(g,, ) l l ad (9(g,,,)) l ad(h)
I > Lo >,
’ Py e ad (g, 4(4) ’

where
h = b, 6)P(95.0 ). fa-
Hence
D) 0 ad(gp,.) = ad(h) o (),
with 4 as in (7). Consequently,
@(g) is an inner automorphism iff @, is an inner automorphism.
Now using (4) and (5) we can define the map

Ty : Aut(A) — Aut(lL);,, 0(P) = Py,

4)

&)

(6)

(7)

(&)

)

(10)

However d/, is not quite a homomorphism. For let @' = (¢',(y")) € Aut(2). Then

T (@' ) = ad(ga ¢ 9(a)) © (P’ P,

(1)
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while, for 4 € I, g = ga.¢(a), a0d ¢’ = Ga,¢/(0)>
oL@ )ou(®)(h) = ¢ (P (gPu(h)g™ )y~
=g V(9P (D) P (9) g
=(g'P' (NP P)a(h)g P'(9)".
Thus
T (D)o () = ad(du, ()P (Gu, p(a))) © (P P, (12)
which differs from (11) by an inner automorphism

ad(ga,(b’(a)qj/(ga.d)(a))g;)pqp(g)) (13)
of I,. Of course,

On the group Aut’(A) = {®|dy = ld4}, D) = Dy, and
(14)
o/« Aut*(U) — Aut(I,);, is a homomorphism,

In general composing o/, with the projection Aut(I;) — Out(/;) thus defines a
homomorphism

0, . Aut(U) — Out(/7,)y,. (15)
We define
In Aut(2) = Ker(a,). (16)

This is, in view of (9), independent of a, and we define

Out(U) = Aut(A)/In Aut(A) = Im(a,). (17)
From (6) and Lemma 1.12 we see that,

If A is minimal non-abelian then In Aut(2) < AutA(“lI). (18)

We shall see, in Corollary 4.2 below, that the homomorphism (15) is surjective,
and so

Out(A) == Out(1,),, . (19)

3.9. Morphisms induced on quotient graphs of groups (cf. [2, Section 4]). Let
(0, ) : (IX)y— (I X"

be a morphism of tree actions: A(gx) = a(g)A(x) for g € I', x € X. Suppose that we
have constructed quotient graphs of groups

X =U=(4, ),

M\ =% =, o)
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as in 2.4. Then one can construct a morphism
?=(4(y)): U A

with the following properties. The diagram

(A e (A"

g A

r————r

commutes, hence so also does

P
L=n,(U,a) - I5n=m, (W,¢p(a))

I/’aq{ l J ,l,‘;l(‘m

r - I

Further we have a commutative diagram

— 3, —
Xo=(W,a) —— Xj0)= (W, $(a))

A A
Ta j JTMU)

X > X

y)

Thus @ “recovers” (a,4) in the sense that it defines a commutative diagram of tree
actions

@8
(LX) = (Tja Xwr)
(W?, TQ;)JE El (W;I(;),T‘g;a))

ar,x) T’ I,x" (n

Finally,

(o, 4) is an isomorphism iff @ is an isomorphism.
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4. Length preserving group automorphisms come from automorphisms
of the quotient graph of groups

4.1. Theorem. Let X be a minimal non-abelian I'-tree, with hyperbolic length function
| = ly. Form a quotient graph of groups

MN\X =U=(4,),

choose a base point ag € VA, and use 2.4 to identify I = I, = ni(W,a9) and
X=X, = (Qfgg ). Let o € Aut(I'). The following conditions are equivalent:

(@) x € Aut(I"); : l((g)) = l(g) for all g€ T.

(b) 3P = (¢, (7)) € Aut(N), and h = |w|, where w is an edge path in A from ay to
P(ag), such that o = ad(h) o P,

r=n(W,a,) —= I'=n,(Way)

., ad (h)

751(91’4)(00)) _— n](m,(f)(ao))

Proof. (b)=-(a): This follows as in 3.6. Putting I, = 7;(W,a) and X, = (‘lrl,va), with
length function /,, we have isomorphisms of group actions

(Pa, D2) (ad(h), k")
(rmXa) _—"(r¢(a)’X¢(a)) ——_’(raaXa)

(cf. 3.3 and 2.3(3)). It follows then from Lemma 1.3 that ad(h) o , preserves /.

(a)=(b): Suppose that oo = | (I = l,). Since X is a minimal non-abelian
I-tree, it follows from Theorem 1.10 that there is a unique 4 € Aut(X) which is
o-equivariant, i.e.

(0, 4) : (I X) = (' Xa)

is an isomorphism of tree actions, where X, denotes X with the given I'-action com-
posed with a. Now it follows from 2.5 that we can choose fundamental domain data
so as to identify

M\X, = A =T\x

Moreover the projection ¢ : (W) — I' is the same for both interpretations of 2.
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Then (cf. 3.9(1)) the isomorphism (x«, A) permits us to construct ¢ = (¢,(y)) €
Aut() such that we have a commutative diagram of isomorphisms

(¢”u’ djao)
(L ,Xa()) Ty X¢’(ﬂt)))
(l//“()’ T“o) l J ('f’muy 5 T('ﬂ"ﬂo))
r.xXy —— €. X)
(x,4)

Fix a spanning tree 7 C A4 so that i factors through an isomorphism 7;(U,7T) — T,
which we view as an identification. For a,b € VA let g, € n[a,b] come from the
edge-path in 7 from a to b. Let ¢, : ' — I, denote the inverse of the isomorphism
W, : I; — I'. Then the diagram above plus 2.2(13) furnish a commutative diagram

D, ad(g, )
0- $lag)
I:lo I:ﬁ(ao) > ag
Oy ’ Iggb(uo) I Ta,
r——I————7

Thus, using g, to identify I" with I, a is converted to ad(ga,, ¢(a,)) © Pa,» Whence the
theorem. [J

4.2. Corollary. Let I',X,] = Iy, and U = I'\X be as in Theorem 4.1. Choose a base
point ayg € VA and identify (I, X) with (I;,X,,). Then we have an exact sequence

| — In Aut(2) — Aut(U) S out(r); — 1, (1)

where 64, is as in 3.8(15).

Proof. The only non-trivial point is the surjectivity of o, and this is given by
Theorem 4.1, (a) = (b). U

The sequence (1) permits us to use the study of Aut(2), which we carry out in
Sections 6 and 7, to obtain information about Out(I");, described in Theorem 8.1.

In the next section, we apply Theorem 4.1 to the special case when 4 = I'\X is an
edge (amalgam) or a loop (HNN-extension).

5. Amalgams and HNN-extensions

5.1. Amalgams. Let 4 = ao-+—o b, and view %, and 2z as inclusions of a proper
subgroup,

Ay 2 Ao 5 Ap. (D)
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Then

I'=mn(W,A) = Ay xo, A, (2)
while

I, = m(W,a) = o, %y edpe”" < m(A). 3)

The map n(WA) — I killing e € n(W) induces an isomorphism I ai]‘ . For y €
Aut(I'), let y, denote the corresponding automorphism of I7,.

Following Martindale and Montgomery [6] we call y € Aut(I") an induced automor-
phism if () = . (c = a,b), and an exchange automorphism if y(,) = &, and
(p) = ;. Note that

Aut(4) = {I,q}, a(e) =e. 4)
Let / denote the length function of the I'-action on X, = (Q/I?;J).

5.2. Theorem. Let y € Aut(I'). Then loy =1 iff y=ad(h)o B, with he I and B is
either an induced or an exchange automorphism.

Proof. We know from Theorem 4.1 that [ oy = [ iff y, = ad(g) o &,, where & =
(¢,(0)) € SAu(AN), and g € n[a, Pp4(a)]. Write

P = (¢4, {Pa Do}, {Pe}, {0e, b2}).
Then we can factor
=9 o
where
@' = (1dy, {ad(dc),ad(57)}, {lds }, {3e. 02}),
" = (¢4, {d: b}, {de}, {11,
¢! =ad(5; ") o ¢g, 5 =ad(6;") o ¢
An easy calculation verifies the above, as well as the fact that
¢, =ad(s,): I, — I,

Thus, replacing g by g¢d., and ¢ by @", we reduce to the case when 5, = 1 = J5,
which we now assume. It follows that, for @ : n(U) — n(A), P(e) = d.ed; T—e
Thus

(Da('da) = ¢a(~dtz) = "Q{du(a),
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and
D(esthe™ ) = epp(ly)e ™" = esly,pye"

When ¢4 = Idy, D, is induced. When ¢4 = g, g € n[a,b], so y, = ad(ge™") o ad(e) o
&,, with ge=! € I,, and i, := ad(e) o @, satisfies () = edo(HF,)e™! = ealpe™!,
while Y (epe™!) = e(a(e)ps(Hy)o(e) e ! = eeale le™! = of,. Thus ¥ is an
exchange automorphism.

To complete the proof it suffices to show conversely, that, if ¥ € Aut(I') is either
induced or exchange, then i, = ad(h)o @, for some & € dAut(WA) and 4 € n[a, p4(a)].
Define ¢4 = Id,4 if Y is induced, and ¢, = o if ¥ is exchange. Let ¥, = Y|y :
Ay — Ay, for ¢ = a,b. Since, in I', o, = o, N sy = Yol N\ Yoy, Y induces an
automorphism Y, of /. Thus we have

® = (¢A’ {'pa’ 'ﬁb}’ {'pe}a {1’ 1}) € 5AUt(QI)

It is easily calculated that y, = @, if ¥ is induced, and ¥, = ad(e) o @, if ¥ is
exchange. O

5.3. The stabilizer of /, Aut(I');. For ¢ = a,b, let Aut® () denote the stabilizer of
</, in Aut(.«Z,). Then the restriction homomorphisms Aut®(s/,) — Aut(.%,) allow us
to define

1A = Aut? (,) X au(,) Aut”(25)

= {(da> p) € Aut(,) X Aut(p) | Pq

&}

Clearly we can identify IA with the group of induced automorphisms of I'. If there is
an exchange automorphism y, then y* is induced, and (IA,7) is the group of induced
and exchange automorphisms.

Put

o = P»

N ={(ad(g™"), (ad(9).2d(9)) | g € L}
<ad(l')><IA.
5.4. Theorem. If there is an exchange automorphism y then
Aut(I'); = (ad(I') > (IA, 7))/N,
otherwise
Aut(l'); = (ad(I') >< IA)/N.

Proof. See Lemma 5.2 of [5]. O
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5.5. HNN-extensions. Let

A=a e
Ay — s, (1)
Then
I'=m(WA,a) = (e |eaz(s)e™! = a,(s) Vs € ) (2)

is the HNN-extension associated with (1). Note that,
Aut(4) = {L, o}, a(e) =¢. (3)
Let / denote the length function of the I'-action on (9}:71).
5.6. Theorem. Let y € Aut(I'). Then loy=1iff y =ad(g)oy with g€ T and s of
one of the following forms:
() lp('da) = oA, lﬂ(fxz&fe) = g, lp(e) = dce, 0. € A, and ad(éee) oY oa =
lp O Og.
(2) lp('ﬂa) = g, lp(a'éde) = Oo e, l»[/(e) = §ee_1’ O € Ay, and ad(éee~1) © lp Oz =

Y o a,.

Proof. From Theorem 4.1 we know that /oy = [ iff y = ad(g) o &, for some & €
o Aut(N) and g € I'. Writing

D = (b1, {ba}, {¢e} {0e, 0z})
we can factor
S=0@ o
where
P = (1d,, {ad(05)}, {1dw. }, {3, 0z}),

' = (¢Aa {ad(éz_l )o ¢a}’ {¢e}, {55_15& l})

An easy calculation shows that @/ = ad(dz) : I' — I'. Thus, replacing g by gé; and
® by @”, we can reduce to the case d; = 1, which we now assume. Then we have
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commutative diagrams

d (s,
Ay _L(_e_)_oﬁ_, Ly Ay a A
(e): «, ] I%A(e) @) ae—[ I%A@
L, A e Ao )]
¢E ¢e
From the diagram (1)(¢) we see that
a(0z,) = a¢4(2)ﬂe- (2)
Further
ad(6; ) odaoa. = 0g 0 e and ¢, 0z = ay,e) © Pe. 3)

Let y =@, : I — I'. Then

V0w, = Ga : Ao — o,
(aze) = dg ) Fes (4)
Y(e) = depale).
Case ¢4 = Id4. Then Y(az.94,) = oz, Y(e) = dee, and (cf. (3)) ad(5; ) e =
% e = ad(e)azdp. = ad(e)P,oz, 5O
ad(dce)patte = ot (5)
Case ¢4 = 0. Then Y(os54,) = a, e, Y(e) = d.e !, and (cf. (3)) ad(d, " )paa, =
azp. = ad(e™ o d, = ad(e™")¢atz, 5O
ad(d.e " )battz = Pate. (6)

Conversely, let € Aut(I") satisfy (1) or (2). Then we can define ¢, € Aut(=,;)
and ¢, = ¢z € Aut(L,) by ¢ = Y|y, and ¢, 0 0z = ay,) © ¢, Where ¢4 =1Id, in
case (1), and ¢ in case (2). The latter gives the commutative diagram (1)(e). The com-
mutativity of (1)(e) follows from the hypothesis (5) in case (1), and (6) in case (2).
Thus we have y = @,, where

P = (¢4, {da} {¢e}, {e, 1})-

Let F, be a free group of rank n. Suppose that F, acts freely (without inversions)
and minimally on a tree X with a hyperbolic length function /.

5.7. Proposition. Let A = F\X. Let ¢ € Aut(F,). Then lo @ = I iff there is an
isomorphism ¢ : A — A, and an edge path y from ay to ¢(ag) such that

plerer---e,) = ypler) - dlen)y™

for all edge loop eje; - --e, € m(4, ap).
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In particular if A consists of one vertex and n geometric edges {ei,ez,...,en}
(4 is a “rose”), then 1o @ = | iff there is a y € F, and a permutation ¢ € S, such
that ¢(e;) = yeyy™! (1 <i<n).

Proof. The proof is left to the reader. [

5.8. Bounded automorphisms. Let I' = 7;(2,a) act on X = (‘IFI:Z) with hyperbolic
length function /. Let xo = [1], € X. Then for L = L the path length function on I
defined as in 2.2(5), it follows from 2.3(1) that

L(g) = dx(gxo,x0) VgeT. (1)
It then follows further from [1], that
I(9) = Max(L(¢*) — L(9),0) VgeT. (2)

Let H C T be a subset stable under squaring. It follows then from (2) that if L(H) is
bounded then /(H) is bounded. If H is a subgroup then /(H) can be bounded only if
I(H) = {0}, indeed I{g") = |n|l(g) for g€ I and n € Z.

If, conversely, I(H) = 0 for H < I', then either (i) H fixes some x € VX, or (ii)
H fixes an end ¢ of X, but no vertex (cf. [2, (7.2)]). In case (i), H is contained in a
conjugate of some .«%, and so L(H ) is bounded. However, in case (ii), L(H) will not
be bounded.

Call a subgroup H < I' bounded if L(H) is bounded. Call an automorphism o €
Aut(I') bounded if a(H) is bounded for all bounded H < I'. If « is bounded then it
follows from the discussion above that, for all x € X, a(I;) < I, for some y € X.
In fact, if « and a~! are bounded, then & permutes the maximal bounded subgroups
(= maximal vertex stabilizers) of I', and so, if I} is a maximal vertex stabilizer, then
a(I;) =T, for some y € X.

5.9. Corollary. Let o € Aut(T’). If loa =1 then a and o~ are bounded.

Proof. Since /oa™! =/ it suffices to treat «. By Theorem 4.1, « = @(5) = ad(y) 0 6@,
for some y € n(W) and & € ) Aut(W). By Lemma 3.5, 6P, preserves L, and clearly
ad(y) increases L by at most an additive constant (2 - L(y)). O

6. The structure of Aut(A) and In Aut()

6.0. Composition and the center Z(2). In this section we fix a graph of groups U =
(4, &), and put

G = Aut(). (1)

For a € VA we write I'; = n1(W,a) and X, = (‘l/_f,/a).
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For reference, we recall the composition

' =((¢".(") =0 (2)
of ® = (¢,()) with &' = (¢',(y')) (cf. (3.6), and [2, (2.11)]).
=40 (3)
For e € EA, 6g = a € VA,
bz = Vo) Pas D) = ey © P 4)
Ve = Poy(VaWpay V2 = Py (Ve Vo) (5)

With §, = y;ly., 8, = y’a_l})é, and &) = y”;ly;’, this gives
d; = ¢:1)(a)(5e)5:])(e)' (6)
In some places we shall make use of the following hypothesis.
(MNA) The I,-tree X, is minitnal non-abelian.
This condition is independent of a, so we can say similarly,
(MNA) “U is minimal non-abelian.”
In this case it follows from Proposition 1.5 that the center
Zy(N) = Z(13) (7
acts trivially on X, and so Z,(U) < .7, in fact
Z,(W) < ae(Ae) Ve € Eg(a). (8)

Let z, € Z,(N). For b € VA define z, = gz,g~', where g € n[b,a]. Since n[b,a] =
gl,, this definition is independent of the choice of g. Moreover if & € =[c,b] then
hzyh~! = h,. Putting

z = (2p)bevas 9)
we see that such elements z form a group

)
such that

Z(W) S 2(W),  zvo 2, (10)

is an isomorphism for all b € V4. We call Z() the “center of N”.
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Let a € VA and e € Ey(a). It follows from (8) that we can define Z, () < .7, by
Zo(A) = oo Ze(A). (11)
For z € Z(W) we have
z, = de(z.) for a unique z, € Z,(W). (12)
If 01e = b then
%,(zz) = evz(zz)e ™ = ezpe™ =z, = we(ze),

whence

Zg = Ze. (13)

6.1. The group G" = Ker(gy), in the exact sequence from 3.7,

1 -G 5 G Au4), (1)
where
qu(P) = ¢4, G ={P|¢s =1d4}. (2)

We then further have the homomorphism

G' L [T Autez) x [T Aut(2),

acVA e€EA

(@) = (Pa)acvas (De)ecka).

This permits us to define normal subgroups

GVE g6 q 6! (3)
where, for ® = (¢,(y)) € G*

® e GV iff ¢, € ad(Z,) Va € VA, 4)
and

® e G iff ¢, € ad(4,) VYu € VA UEA. (5)

6.2. The group In G := In Aut(). Recall from 3.8(16) that this is the kernel of &, in
the commutative diagram

G —% e Au(D)

l proj

G ——= Oul),
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where 6,(@) = Py, as in 3.8(3). Thus
InG = {®| P, € ad(I,) = In Aut([3,)}, (1)

and this definition is independent of a € VA.
We now make the assumption

(MNA) U is minimal non-abelian.
It follows then from 3.8(18) that

InG < G, (2)
and from Corollary 4.2 that we have an exact sequence

1-InG— G- 0ut(l}), — 1. 3)
To analyze Out(/});, we shall introduce a chain of normal subgroups between G and

InG.

6.3. The homomorphism 6 : G — G is defined on @ = (¢,(y)), as in 3.4, by 6@ =
(¢,(8)), where ¢ is left unaltered, 7, is replaced by é, = 1, and 7, is replaced by
3¢ = y7'7.. We have 3.4(1),

@, = ad(7) 0 (68)a : T — Tyiar. (1)
From 3.6(6) we know that J is a homomorphism,

3P o ®) = 5P 0 6d. (2)
Further (cf. 3.4(2)) d is clearly idempotent,

& =0 3)
Thus

G = yG > G, where
7G = Ker(é). (4)

It is easily seen that we have an isomorphism

[[rn=6 )

ac€VA

sending g = (ga)aeva to @, = (1,(y)), defined by I = Idy, J, = Idy, for u € VAUEA,
and, for a € VA, e € Ey(a), yo = ga = y. (whence d. = 1). Since (,), = ad(g,),
clearly, we have

7G < InG. (6)
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It follows that,

If InG<H<G, then H=7yG>=0H, (7)
and

6,H = d,0H, where g, : G — Out(l,),,. (8)
6.4. Theorem. Continue to assume (MNA) : W is minimal non-abelian. Let & =
(¢,(8)) € 6G. Then ® € InG iff the following conditions hold:

(a) ¢y =1dy, ie. ® €3G
(b) There exist elements hy € s/, (a € VA) and s, € o, (e € EA) such that,

¢, = ad(hg), ¢ = ad(s,) and o, = haoe(se)™"  if Goe = a.

(c) For all e € EA, the element z.(e) := s, 1sz belongs to Z,(W) (cf. 6.1). This defines
an element z(e) € Z(AN).
(d) For each closed path (ey,...,ey) in A4,

z(ey)---z(en) = 1.
Under these conditions, ®, = ad(hy) : I, — I

Proof. First assume that @ € 8InG. Then (a) follows from 6.2(2). By assumption,
for each a € VA, there is an h, € I, such that ®,(= P(,)) = ad(h,).

Pu(= o)) = ad(ha) : Iz — 1. (1)
Let g € I, e € Eg(a), and b = dye. Then e lge €Iy, so
ho(e™"ge)hy ' = @y(e™ ' ge)
= (8ced5 ") (haghy ' )(3ced; )
= (b 0.0 ") g(h; ' 5eed ).
Hence
zo(e) := h;'5.e57 ' hpe ™" € Zo(W) (= Z(1L)), (2)
since z,(e) commutes with all g € I;. As in 6.0(9), this defines an element
z(e) € Z(N).

Now zg(e) = [(h; 0., €, 05 'hy, )| € 5,. Hence the indicated path cannot be reduced
(cf. 2.6). It follows that 5;1hb = oz(sz) for some s; € &7, and so hy = Oz0(sz).
Applied to € in place of e, we obtain

hy = Se00(s.) for some s, € o, (3)
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for each a € VA, e € Eyg(a). From (1), (3), and the commutative diagram
ad (8; Yo, =ad (8, 'h,) = ad (x, (s,))

udu —> ij
1(’ 1(’
,5% - .,QZ'
&
we see that
¢ = ad(s,), (4)

whence condition (b). From (2) and (3),

z,(e) = oze(s;1 )eoz;(s;)e_1
= oe(s; " ate(sz)

= 0,(s; 's5) € Zy(N), ()
ie.
ze(€) = 57 57 € Ze(2), (6)
whence condition (¢). Next note that, if dge = a, 0;e = b, we have
B(e) = deed; " = (hate(se) Nehpaase) ™)™
= hotte(se) ™ eve(se)hy
= ha(@(se) " exglsz)e ™ Nehy )
D haza(eder; L zu(e)haehy ()
Now for any path y = (go, 1,91, ---,€n gn) in U, say from a = dpe to b = 0 e,, define
z2(y) =z(e1)---z(en) € Z(A)  (cf.6.0(9)). (8
Then it follows inductively from (1) and (7) that
(7)) = za(Nhalylty . ©)
When 7 is a closed path (b = a), it follows from (1), (8), and (9) that
z(e1)---z(ey) = 1 for all closed paths (ej,...,e,) in 4, (10)

whence condition (d).
Now, conversely, suppose that @ satisfies (a)—(d). Then we have elements £, € <7,,
Se € Ao, zo(€) = s;‘sz € Z,(N), and we have the relations

¢o = ad(hy) : Ay — S, (11)
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as well as (2)—(5). It follows that the calculation (7) remains valid, and hence so also
the relations (8) and (9). From (9) it follows that

®u(g) = za(g)hagh,' (9 € L) (12)

where z, : I, — Z,() is the homomorphism defined by (8), via the natural projection
I, = my(W,a) — m (4, a). Finally, condition (d) says that the homomorphism z, is
trivial, and so @, = ad(h,), whence @ € InG, as claimed. [

6.5. Corollary. With the notation of 6.1, we have

nG <GP 16" 161G

6.6. Successive quotients. Recall the surjection 3.8(10)

o). G - Auy(l, ), (1)
which projects to the homomorphism ¢, in the exact sequence of Corollary 4.2

1 - InG — G -2 0u(l,), — 1. (2)
The restriction of 4,

o : G" — Auy(I,), (3)

is a homomorphism 3.8(14). For each superscript X = A4, (V), or (¥, E) above, we
shall write Aut(I',)} = 0,G¥, and Out(I,)f = 0,G* = 6,6G*. Thus we have

Out(r,)}"® < ouy(r,)}” < Oou(I,)f < Out(I,),, (4)

with successive quotients isomorphic to the corresponding quotients of G or of 4 G.
We begin by observing that

G/G" = 3G/6G" = Out(I,);,/Out(I,)} < Aut(4), (5)

where Aut(4) denotes the group of graph automorphisms of 4. In many cases of
interest, e.g. when I, is finitely generated, the graph 4 is finite [2, (7.9)], and hence
so also is the group Aut(4).

6.7. The groups Aut®(Z,) and the quotient G” /G, For a € VA, define
pa. L, 18 ,-conjugate
to a2, Ve € Ey(a)

Autf(e,) = {¢ € Aut(,) (1)

and

Out?(,) = Aut?(o,)/ad(,). (2)
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Let & = (¢,(7)) € G*, and 60 = (¢,(8)) € 6G*. The commutative diagram

(for a € VA, e € Ey(a)),

ad (8,")og,
KA Ay

I

oA, ———>.

<
e

shows that
¢a e AUtE(’da)’

and further that

¢, € Aut(s7,) extends, via a,, to an automorphism in Aut® ().

From (4) we have a homomorphism

¢v G > [] Aut®(),

acVA

v (P) = (Pa)acva = Py (0P),

and also

¢y : G'/InG — [] Out®(.e2),
acVA

Ker(¢)) = G

Conceming the image of ¢y, consider an element

(¢a)a€VA S H AutE(Jfa).

acVA

3)

4)

(5)

(6)

(7)

(8)

By (1), there exist elements 6, € ., (e € Eo(a)) such that ad(5;') o ¢,
stabilizes «,./., and hence induces a ¢, € Aut(«/.) such that diagram (3) com-
mutes. Then, with ¢4, = Id4, we have defined a candidate @ = (¢,()) with ¢y (@) =
(¢a)acvs. The only remaining obstacle is that, for @ to belong to G, we must

have

¢)e = ¢z Ve <€ FA.

©)
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Thus, if dpe = a and d1e = b, we require an automorphism ¢ of ./, making the
following diagram commute.

&{ ace .,Q/ (le- .,Q/
a (4 el b
ad (8, )o@, l £ [ad (6;" )00,
&ia - %, ,,QZ, o, - "dh ( 1 0)

This imposes a non-trivial compatibility on the choices of d, and dz. Thus

I
m(¢y) = [] Aut®()
acVA
Ve € EA, Ope = a, 01e = b,30, € o4,, 65 € oy,
and £ € Aut(sZ,) such that (10) commutes.

= {(¢,,) e [ Aut(#.)

acVA
(1)
Similarly, Im{¢y) is the corresponding quotient of (11) mod Il ad(.s,):
GG = 56 /567 = T outt ()
acVA
= Out(I, )} /Ou(I,)}” (Va € V4). (12)

7. A filtration structure on Out(I');
In order to introduce a useful filtration between InG and 6 G we here introduce

an auxiliary group A, an epimorphism D : A — 6G"’ and a filtration of A. The
results of these calculations are summarized in Theorem 8.1 below.

7.1. The group A. For a € V4 and e € Ey(a) we shall use the notation

Ne = Ny (0, (normalizer) (N
Z, = Zy (. 54,) (centralizer)
Zey = Z(A,) and Z, = Z(sl,) (centers). @
We define a homomorphism ady, : N, — Aut(eZ,), by
%(ad,(0)(5)) = oae(s)o™". 3)
Now define
Aa=| I M| x )

e€Ep(a)
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For A, = ((Ue)eEEo(a),ha) € Ag, define

Pa(= Pa(4a)) = ad(hs) € Aut(),

¢2(: ¢e(la)) = ad,c/g(ae) € Aut(ﬂe). (5)
Now define
A= H'A,,
aeVA
= {(la)aem € H Ag|Ve € EA, Ope = a, O1e =b, ¢Po(4g) = ¢z(lb)} (6)
acVA

We next define the homomorphism
D:A— G (7)
on A = (As)acvas 4a = ((Ge)ecEy(a)s ha), BY
D(A) = &* = (¢*,(8")) where, for a € VA, e € Ey(a),
¢F =1ds, &)= ba(la), ¢} = Pelda), (8)
8 =1 and & =ho,".

The conditions of (6) and (8) and 6.1(4) show that in fact, &* € 6G". It is easily
seen that D is a homomorphism. We next show that

D:A—d6GY) s surjective. (9)

In fact, let @ = (¢,(3)) € 6G). By definition of G (6.1(4)), ¢, = ad(h,) for
some h, € Z,. For e € Eg(a) put 0, = 3, 'h,. The commutativity of the diagram

ad (6;)0¢,=ad (5,',) = ad (s,)
'% —»

R

o, o

e

'
]

¢€

shows then that 6, € N, and ¢, = ad 4 (0.). Since ¢, = ¢z it follows that A = (A3 )aevu
defined by 1, = ((0, )eckqy(a), #a) defines an element A € A such that D(4) = @.

Finally, we calculate Ker(D). Since Z, := Z(,) < N, Ve € Ey(a), we have the
diagonal homomorphism

Ay 0 Zy— Agy,  A4(z) = ((0e)e, ha) with hy =z = 0, Ve € Ey(a). (10)
Since, evidently, ¢o(4,(z)) =1dy,, Pe(4a(z)) = Idy,, we have

AZy = HA,,Z,,SA. (11)
acVA
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From (8) we see that 4Zy < Ker(D). We claim that this is an equality. For suppose
A = (4,) as above and D(1) = ¢* = I. Then from (8) we see that Id, = ¢, = ad(h,),
S0 Ay € Z,, and | = 6, = hya, !, so 6, = h, for e € Eo(a). Thus A, = A,(h,), so
A€ AZy.

In summary, putting

zv = || z (12)

acVA

and defining 4 = (4,) : Zy — Hae w1 Ao, We have an exact sequence

1 -2y 242867 1. (13)

7.2. The quotient A/A%), Let

;" - (AG)IJEVA S A?

1
j~a = ((oe)eEEo(a)a ha) € Aa = H Ne | x ﬂa- ( )
e€Ey(a)

Recall that

Do = Po(A) = ady,(0.) € Aut( ). (2)
Clearly
¢(A) € ad(H, ) <> 0, € (%) - Z,, (3)

where Z, = Z 4 (%.5,).
We have a homomorphism

A— [[ada(N.) 4)

e€EA
Ar— (Pe(A))ecEn

whose image is

e

[T 2du Vo) = {(qae) € [Jada ()

e€EA

b = ¢z VeeEA}. (5)
The inverse image of the inner automorphisms is

AE) = () € A| dpo(A) € ad(A,) Ve). (6)

Thus we have an isomorphism

A/A(E) _i_) Hl(ad_%(Ne)/ad('ﬂE)) = (HI ad,;if(Ne)) /(H,ad(ﬂe)) . (7)

ecEA
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Defining the geometric edges of A by
GEA :={{e, €} |e € EA},
we obtain from (7) and the definition (5) of H' an isomorphism

PR adm(f\/;zg(r;(;.%(]va)_ ©

{e,e}€GEA

Next observe that, for the homomorphism

D:A— GV
we have
AE) = D1(6GH) )

(cf. 6.1(5)). Hence we have isomorphisms

A/AB = 5GP (3G = ouy(r,)| fout(I,) . (10)

7.3. The group A1 < A®) is defined by

A = {} € Ao, € a4, Ve € EA}. (1)
For /. € A¥1 } as in 7.2(1), put

Oe = 0(Se),  Se € e (2)
Then

¢ = ad(s.), and so, since ¢ = ¢z, z. =5, sz € Ze) 1= Z(A,)

=z . 3)

For D(}) = &* = (¢,(5)), we have . = h,o.(s.)”". It follows from Theorem 4.1 that

SGVE .= D(A®)y > 5 InG. 4)

Hence, putting

out(I,)V" 1= 0,(G"H)), (5)
we have
3G E) /6GHE = ouy(I,) ) jout(1L) Y F. (6)

Now A®)/AE! maps onto dG"F)/6GYE), but this may not be injective, since A¥]
need not contain Ker(D) = AZy. Instead we have

5G(V’E)/(5G(V’E] o~ A(E)/A[E] - AZy. N
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We now analyze the right-hand side of (7). First note that

AB = T 48, where AP = | [ (wste) 2. ) x s
acv4 e€Ey(a) (8)

Zo = Z 4 (00Le),

7
AT = A¥1 where AF] = dett, | X <A, 9)
a a
acVA e€Ey(a)

The H' notation designates the restriction needed to make ¢, = ¢z. Since Z, Moo, =
UeZie)s Zey = Z(, ), wWe have (0ey) - Zo/oe by = Z,/0.Z), and so

ADAE =TT T Ze/eZie. (10)
a ec€Ey(a)

Here the ' has been omitted on the first product, since the factors from Z, will never
affect the compatibility conditions, ¢. = ¢z.
Next observe that

AF (42 = || ] e | - Qe Za)| % as
e€Egla)
where
ApwZa=Im|4:Z2,— [] 2. (11)
e€Ey(a)

From (10) and (11), and (6) and (7), we conclude that
HeEEO(a)Ze
(HeGEn(a)an(e)) : AEO(H)ZH
& 5GUHE) 5GHE]
= Ou(F,); " /out(1,) P, (12)

AEVAEY . Az, o H

7.4. The group A¥%), For A € A¥) as in 7.3, we have from 7.3(3)
ze(=2e(4)) = 57 55 € Z(oy = Z( ). (1)

Suppose that 2’ € Al and A7 = A'A. Then z,(1") = (s)7'sY = (sLse) (shsz) =
—1 '“ls’Es; = 5,7 12,(A )5z = 2,(4')s; !5z = 2,(A")z,(A). Thus we have a homomorphism

Se " Se
'
C : A[E] — Z(e)
egE[A (2)
A (Ze(A))ecka-
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Here the []' notation designates the restriction that zz = z;! Ve € EA (cf. 7.3(3)).
If, in 4, we replace each s, by s, = s.w., with w, € Z,), we obtain a new element
A € A¥! with z,(4') = z.(4) - (w; 'ws). Since we can freely choose the w's, it follows
that

homomorphism { is surjective. 3)
Now define
AEZ) = [} € AB)|z,(1) € Z(N) Ve € EA}. (4)

Recall from 6.0(11) that Z.(2) is defined by

e Ze(N) = Zo(W) := Z(I), (5)
for a = dpe. We put

SGUV-EZ] — D(AIE2)),

Out(Fa)EJ/’EZ] = 5,(6G7E2)), (6)
It follows from Theorem 6.4 that

sInG < G4, M
and so

3GV ESGY ) = ouy(1,) 0wy 1, ). (8)

From (6) and 7.3(4) we see that the groups in (8) are a quotient of AF1/AFZ] In
view of (3) and the definition (4) of A¥Z) as {~Y([]/Z.(A)), we have a (-induced
isomorphism

T: AE A2 2, T 2/ Ze(0). 9)
e€FA

From 7.1(13) we have
Ker(AF! 25 5GHEy = AFI N Az, (10)

It is clear from the definitions 7.3(1) and 7.1(10) and (11) of the latter two groups
that

AN AzZy = ] daZop, where Zug :=2,0 (| Gt (11)
a€ VA e€Ep(a)

Thus, putting Zyp = Haem Z.E, we have

KCr(A[E] i’ 6G(V,E]) — “AZVE” = H AaZaE’ (12)
acVA

and D induces an isomorphism

AEYAEZY . pzyp = 5GPE G, (13)
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Combining (9) and (13) we see that

Z
V.E 5 U-EZ) o 7z ® " 4o 14
oG "5 /0G Coker ( VE ael VIAZaE — eel EIA 70 (14)

where, for w = (W, )aers, Wa € Zag, and w, = a.(w,) for e € Eg(a), we put @.(w) =
w, lwg € Z), and define w(w) = (0e(W))ecrs, Where w.(w) denotes the class of
@.(w) mod Z,(A).

7.5. The homomorphism 521 — Hom(n;(4, a), Z()). Recall the surjection induced
by 7.4(2) and (4),

SW I | AT (1
ecEA
where
H'ze(m) = {z =(z) € [[2(W) |z = 27" Ve GEA}. (2)
ecEA eckEA

For z = (z,)eck4 as in (2), each z, defines an element z(e) € Z(A) (cf. 6.0(12)) with
components z,(e) € Z,(N) Yu € VAUEA, and z.(e) = z,.
Recall the path group of the graph 4 (a graph of trivial groups),

n(d) = (EA|ee = 1 Ve € EA). (3)

It follows that an element z € H;e g4 Ze(W) defines (in fact, is equivalent to) a homo-
morphism

X 2 T(A) — Z(W), x:(e) = z(e). 4)
Moreover, z — y, defines a homomorphism, in fact, an isomorphism,

1 ¢ [ Z(20) =5 Hom(n(4), Z(2)). (5)

eckEAq

Let a € VA, so that m(4, a) < n(4). Then we have the composite homomorphism

I1'Z,(2) * Hom(n(A), Z(2))
eeFA =
. res,
A" ——————— Hom(n,(4,0).Z(W) ©

It is easily seen that res, is surjective, hence

g is surjective. (7
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If g € n[b,a] then ad(g) : n;(4, a) — m,(A4,b), and u, = up o ad(g). Hence Ker(y,) is
independent of a. We put

InA = Ker(y, : A¥? — Hom(m (4, a), Z(A))). (8)
The point of this notation is that it follows from Theorem 6.4 that
D(InA)=46InG. 9

Claim. Ker(AE? 2, 5GVE2y < [n 4. (10)
Say i € A¥2 nKer(D) = A¥?1 N AZy. Then A = (Ay)acys Where 4, = 4.k, with
hy € Zog = Z, N ﬂeeEU(a)“ede’ say h, = o.(he), he € oF,, and we have

zei=h, 'hz € Z(A) Ve € EA. (1)

Each h, € Z, (W) = Z(I,) defines an element z{(a) € Z(WA) with z,(a) = h, and
z.(a) = h, for e € Eg(a). The element z = (2,).cg4 defines (cf. (4)) . : 71(4) — Z(N)
by x.(e)e = h; 'hz =z.(a) 'ze(b) (b= 0e), whence

() =z(a)"'2(b) (a=doe, b=dre). (12)
It follows then that,

If y = (e1,€2,...,e,) is a path in 4 from a to b then y.(|y]) = z(a)~'z(b). (13)

7

Hence, x.(|y]) =1 if 7 is a closed path (a = b), and so

XZ|7T|(/1,!1) is trivial, (14)

whence (10) (cf. definition (8)).
Finally, combining (7)—(10) and 7.4(6), we obtain isomorphisms

Out(/; )(/:/’EZ] ~ sG"E/5InG 2 AF2)In A
>~ ,ng(A[EZ]) - HOI’I](TE](A, a),Z(QI)) (15)

8. Filtration summary

The next theorem assembles all of our calculations of the successive quotients for
the Out([; ), -filtration.

8.1. Theorem. Let N = (A4,.%) be a minimal non-abelian graph of groups, a € VA,
I,=mWa), X, = (Q’I\;z), and let 1, denote the hyperbolic length function of the
I,-action on X,. Let
(1) H =0ut(I,),, = the stabilizer of I, in Out(I,) = Aut({y)/ad(I}).

There is a filtration,
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(2) HD> HAD> HY > HVED > gOUE > gUEZL > 1) with successive
quotients described as follows:

(3) H/HA < Aut(4) (6.6(5))

(4) HA/HO) = TT'outf(«,)  (6.7(12))
acVA

adME(Ne) n ad%(Ng)
ad( )

Il 0%
(6) H(V,E)/H(V,E] o~ H eCEo(a)
acv4 (HeEEo(a)aez(e)) (Aey@)Za)

(5) HOHED = ]
{e,e}€GE4

(7.1(8) and (10))

(7.3(12))

Z
(7) HY-ElJHWV-EZ) > Coker <Z = T] Zx& > I <e>> (7.4(14))
/ o= M7 12

(8) HWEZl = Hom(m (4, a),Z(A))  (7.5(15))

8.2. Explanation of notation. We collect here, in one place, the definitions of the
groups occurring in Theorem 8.1.

In Theorem 8.1(3), Aut(4) denotes the group of automorphisms of the graph A4.
When 4 is finite, e.g. when I is finitely generated, Aut(A4) is finite.

In Theorem 8.1(4), Out®(,) = Autf(s7,)/ad(,), where

Aut?(o,) = {¢ € Aut(A,) | o, is o, ,-conjugate to ., Ve € Eg(a)}.

Then

HIOutE(da) = (H,AutE(.ﬂa)> / ( 11 ad(d,,)) ,
acVAd acvA acvA

where (¢g)acva € [l ey Aut(,) belongs to H;eVAAutE(.Ma) iff, Ve € EA, dpe =
a, 6ie = b, 30, € A, 6; € A, and £ € Aut(,) such that the following diagram

commutes:
Xz

oA, ———— of, > o,
ad (8, Yo g, \e J ad (5, )o §,
da ng bl %b
a, oz

In Theorem 8.1(5), N, = Ny, (o), and ady, : N, — Aut(s,) is defined by
2e(ad,(6)(s)) = oa(s)o™!, for ¢ € N,, 5 € oZ,. We similarly define ad,, : N; —
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Aut(.Z,). The notation GEA designates the geometric edges of 4 : GEA = {{e,e}|
e € EA}.

In Theorem 8.1(6), Z, = Z,(xete) (a = doe), Zioy = Z(A,), Zo = Z(,), and
Akyay i Za = []ee Eo(a) Ze is the diagonal embedding.

In Theorem 8.1(7), Z,(A) is defined, as in 6.0(11), by 2.Z,(A) = Z(I,) =:
ZA(W)a = 0pe). Further Z,p = Z, N ﬂeeEo(a)“eﬂw For z, € Z,z we have z, = a,z,
with z, € Z,, and so we can define a homomorphism

@: ZVE = H ZaE — HIZ(e),

acVA ecEA
-~ ~1
& ((za)acva) = (2. 2z)ecEn )s

and [z, Ze) consists of all (w,)ecrs € [.ceq Ze such that wy = w1 Ve € EA.
We have

HIZ(e)/Ze(m) = (HIZ(e)> / <HlZe(QI)>,

e€kA ecEA ecEAq
and @ : Zyg — [[.cpq Zier/Z(N) is obtained, by passage to the quotient, from &.

In Theorem 8.1(8), Z(A) is defined as in 6.0(10).
Some of the groups above are nested as follows, for a € VA4, e € Ey(a),

Fa Z e52{(1 Z Ive > Ze > an(e) > Za(m) > {1}9
Z. > Z, > Z(M).

8.3. Remark

(1) In case Z(I;) = {1}, as happens, for example, when I, acts faithfully on X,
since Z(I;) acts trivially on X, (1.5), we have Z() = {1}, so HVE2l = {1}
in Theorem 8.1(8), and, since Z.(A) = {1}, we have, from Theorem 8.1(7), an
isomorphism

!
HYEl =~ Coker (ZVE - H Z(e)> :

eckEA

(2) If 4 is a tree, so that m(4,a) = {1}, then again we have H""#2! = {1} in
Theorem 8.1(8).

(3) Suppose that all the vertex groups .o/, have trivial centers, Z,(= Z(s#,)) = {1}.
Then Z(A) = {1} also, as in Remark (1) above, so H""£2] = []}. Further,
Theorem 8.1(6) and (7) simplify as follows:

HY OO = ] 222,
ecEA

HOE = [T Zey/2.20).

e€EA
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8.4. The case of an amalgam (cf. 5.1). Suppose that
A=ao——ob. (1)

We shall view a, and «; as inclusions of a proper subgroup,

Ay B A, B ) (2)
and put
= sdy4g sty = m(WA)  (22(11)). (3)

Let / denote the length function of the I'-action on X, = (‘I/I\,/a), and put
H = 0ouxl),;, 4)

which we filter as in Theorem 8.1. We shall make more explicit what Theorem 8.1
tells us in this case.
We have

Aut(4) = {I,c}, where a(e)=¢. (5)
Moreover, it is easily seen that,

H/H”* < Aut(A),with equality iff there is an isomorphism

¢ Ly, — o suchthat ()= . (6)
For ¢ € Aut(.,), let [¢] denote its class in Out(.«/,;) = Aut(.«/,)/ad(.e;). Then
HA/HY)
J¢. € Aut(.Z, )(c = a,b)
o {(xa,xb) € Out(.eZ,) x Out(.2%) | such that x. = [¢.] and } . 7N
Galer, = Db, € Aut(,)
dy, (M) Nady, (Nz)
HY Y gWE) o~ 39 .
/ ad(.7,) (8)
Z Zs
HYEY g(VE] e e e ‘
/ O(eZ(e) . Za X och(,_,) . Zb (9)

In Theorem 8.1(7), Z;z = Z, N Ay = Z(y) N A = Zy (), similatly Zpyp =
Z (#p). Evidently

Za(Aa) N Ly (Ap) = Z(I') = Z(N). (10)

For w = (Wa, W) € Zap X Zpg put we(w) = wa_lwl7 = we(w) ! € Ziey = Z(sA,). Then
W Zag X Zpp — (Z(e)/Ze(N)) X' (Zz)/Z(N)) is induced by & : Zog X Zpp — Ziey X' Ziz),
B(w) = (we(w), wg(w)). Since the first coordinate in Zy %’ Z, determines the second,
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and w(Zag X Zpp) = Zy (Ha)-Zy(p) contains Z, (), it follows from Theorem 8.1 (7)
that

HEgE o o ZSe) ()
Zag - Zpp Zoy(Aa) Zy(Sp)
Finally, since 4 is a tree (cf. Remark 8.3(2)),
HYFZ) — {1}, (12)
8.5. The case of an HNN-extension (cf. 5.5). Let
A=a e.
Ay — Ay (1)
I'=m(W,a) = (F,e| eaz(s)e” ' = o(s) Vs € .of,). 2)
Let / denote the length function of the I'-action on X = (Q/I\,Tz), and
H = 0ut(I'),, 3)
which we filter as in Theorem 8.1. We have
Aut(4) = {I,6}, a(e)=cF, 4)
and
H/HA < Aut(4), with equality iff )
3¢ € Aut(f;) such that ¢(a.&,) = vzLe.
For ¢ € Aut(,) let [¢] denote its class in Out(2Z;). Then
HA/HY) = Ooutf(«,)
¢, € Aut(,;) ¢, € Aut(,) such that,
= {x S Out(&fa) X = [¢a] and Vs € 'ﬂe, ¢a(ae(s)) = “E(¢e(s)) } > (6)
and @a(az(s)) = oa(Pe(s))
d(N,) N ad(Ng)
HY) g WE)y — ad(/ve e 7
/ S )
Z, Zz
E) iy (V.E] ~~ € ¢ . 8
He (aez(e).za> * (“zz(e) 'Za> ®

In Theorem 8.1(7), Zsg = Z, Moty Nz, and the map w : Zog — (Z(e)/Z.(U)) x/
(Zz)/Zz(N)) is trivial. Since the second coordinate in the latter product is determined
by the first, we see that

HYE Y HVELD = 7,0 /7,(N) = Z( L. )/ Z(N). 9)
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From (2) we can calculate

ZUY)= Z(I)) (10)
= {S € o, l ae(s) = aE(S) € Z(Jja)}
Finally, since 71(4, a) = {e) = Z, it follows from Theorem 8.1(8) that
HWED ~ 7.(A). (11)
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